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Abstract

We develop a deep learning algorithm for approximating functional rational expectations
equilibria of dynamic stochastic economies in the sequence space. We use deep neural networks
to parameterize equilibrium objects of the economy as a function of truncated histories of exoge-
nous shocks. We train the neural networks to fulfill all equilibrium conditions along simulated
paths of the economy. To illustrate the performance of our method, we solve three economies
of increasing complexity: the stochastic growth model, a high-dimensional overlapping genera-
tions economy with multiple sources of aggregate risk, and finally an economy where households
and firms face uninsurable idiosyncratic risk, shocks to aggregate productivity, and shocks to
idiosyncratic and aggregate volatility. Furthermore, we show how to design practical neural
policy function architectures that guarantee monotonicity of the predicted policies, facilitating
the use of the endogenous grid method to simplify parts of our algorithm.

JEL classification: C61, C63, C68, D52, E32.

Keywords: deep learning, heterogeneous firms, heterogeneous households, overlapping generations,
deep neural networks, global solution method, life-cycle, occasionally binding constraints.

1 Introduction

In this paper, we bring deep learning solution methods to the sequence space and propose a new
global method for computing equilibria in economies with aggregate risk.! Exploiting the ergodicity

property of a large class of dynamic economies, we approximate the aggregate state vector using a
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1We use the expression “sequence space” liberally, referring to the space of truncated sequences of aggregate shocks,
not (only) the space of perfect foresight sequences. To be more precise, one could alternatively refer to our approach
as moving-average as opposed to sequence-space approach.



truncated sequence of aggregate shocks. We use deep neural networks to parameterize the mapping
from truncated histories of aggregate shocks to equilibrium objects of interest, and optimize them
using stochastic gradient descent to minimize equilibrium conditions error over the simulated ergodic
set of the economy.

We make four distinct contributions to the literature. First, we show, how deep learning can be
used to compute global approximations to equilibria of dynamic stochastic economies in the sequence
space. Second, we show, how to construct neural network architectures that predict approximate
policy functions, which are guaranteed to satisfy ex-ante known monotonicity and concavity proper-
ties. Third, based on our monotonicity-preserving architectures, we show, how to obtain supervised
learning targets for policy and price functions, using the endogenous gridpoint method of Carroll
(2006). Fourth, we illustrate the rich applicability and accuracy of our method by solving a chal-
lenging overlapping generations model as well as heterogeneous agent economy with heterogeneous
firms and households. To the best of our knowledge, we are the first to obtain a global solution to
an economy featuring incomplete markets and household heterogeneity in the spirit of Imrohoroglu
(1989)-Bewley (1977)-Huggett (1993)-Aiyagari (1994)-Krusell and Smith (1998), together with firm
heterogeneity in the spirit of Khan and Thomas (2008) and Bloom et al. (2018).

As an example, consider the model by Krusell and Smith (1998) and let z; denote the realiza-
tion of TFP in period ¢, and let z! := (zg,21,...,2¢). The infinite horizon set-up of the Krusell
and Smith (1998) economy implies the length of the history sequence is also infinite. The state
of the economy in a Markov equilibrium in the Krusell and Smith (1998) economy is the current
level of TFP z;, together with the cross-sectional distribution of wealth and income. Let ¢! de-
note the idiosyncratic productivity of the household i in period ¢ and let ki denote their capital
holdings. Let p: = pi(e, k) denote the cross-sectional distribution. Since the distribution, even
when discretized into a histogram as in Young (2010), is a high-dimensional object, this poses
a long standing challenge for traditional numeric methods. The approach of Krusell and Smith
(1998) is to approximate the cross-sectional distribution p; with a low-dimensional statistic such
as aggregate capital K;. Instead of approximating the state vector using its moments or a his-
togram, we approximate the aggregate state vector using sequence-space objects. In particular,
we propose to approximate the aggregate state of the economy by a truncated history of exoge-
nous aggregate shocks. In the context of the Krusell and Smith (1998) model, for example, let
th = (2t—T,2t—T+41,---,2t—1,2t) denote the last T realizations of TFP. Instead of computing the
equilibrium function f*PP*(zy, Ky) =~ f(z¢, pt) (or fapprox(zt,ﬂ?ismgram) ~ [f(zt,m)), we propose
computing equilibrium functions faPP*o%(zI') ~ f(z;, py). For any T < co our approach implies a
truncation error. However, in economies featuring ergodic dynamics, this truncation error converges
to zero as T — oo. Hence, we can approximate the information contained in the aggregate state
vector arbitrarily well by choosing T sufficiently large. Consequently, our function approximators
need to be able to handle large T, implying a high-dimensional input z7, potentially even higher
dimensional than a histogram of the wealth distribution. We will refer to our approach, which uses
a truncated history of aggregate shocks as input as sequence-space approach and to the standard
approach (using, for example, the wealth distribution or a lower dimensional sufficient statistic such

as standard moments, as input to the equilibrium functions) as state-space approach. We use neural



networks to approximate all equilibrium functions that need to be solved for. Like polynomials, neu-
ral networks are universal function approximators (Hornik et al.; 1989). More importantly however,
neural networks have shown great promise in ameliorating the curse of dimensionality (Bellman,
1961) associated high-dimensional function approximation problems, such as solving partial differ-
ential equations (see, e.g. Grohs et al., 2018; Jentzen et al., 2018) or computing equilibria in dynamic

2022; Maliar et al., 2021; Kahou et al., 2021; Gu et al., 2023).2

economies (see, e.g. Azinovic et al., 2

The sequence-space formulation has two main advantages in the context of deep learning solution
methods. First, the sequence-space formulation is potentially more parsimonious, especially in
economies with rich cross-sectional heterogeneity.? Second, using truncated shock histories as the
only network input mitigates a dangerous feedback loop present in simulation-based deep learning
solution methods. While the distribution of shock histories is exogeneous and fixed,* the distribution
of exogenous states moves during the training as the algorithm updates the approximate policy
function. As discussed in Azinovic et al. (2022), a large update policy function might shift the
distribution of training states into areas that have been previously only sparsely covered, causing
large sample error, and correspondingly large gradients, potentially inducing further jumps in the
policy function. While our algorithm still relies on simulating endogenous states an an input for
evaluating loss function® those do not enter as an input into neural networks parameterizing the
core equilibrium objects of the economy.

The second contribution of our paper is that we show how to construct neural network architec-
tures that guarantee monotonicity or even concavity of the resulting approximator with respect to a
chosen set of inputs. Rather than directly approximating individual policy function using a neural
network that takes the aggregate and idiosyncratic state as input,® we build on the operator learning
approach of Zhong (2023). A simple operator network maps the sequence of aggregate shocks to a
policy functions over idiosyncratic state variables only. Hence, the neural network predicts different
idiosyncratic policy functions for different aggregate states. For the Krusell and Smith (1998) econ-
omy, for example, the neural network predicts a consumption function based on the realized history
of aggregate shocks, which takes only individual productivity and asset holdings as input.

This approach allows us to ensure properties of policy functions, such as monotonicity and con-
cavity in the idiosyncratic asset holdings by construction. Being able to guarantee such properties
has several advantages. First, in the spirit of economics-inspired neural networks, we encode known
properties of the equilibrium policies directly into the architecture of the neural network, so the net-
work does not have learn something which is known ex-ante, rendering the training procedure more
robust. Second, in the context of solving for household policies, an always monotone consumption
function enables us to apply the method of endogeneous gridpoints of Carroll (2006), and to train

the consumption function in a supervised way, enhancing the stability of the training procedure.

2Section 2 provides a more detailed discussion of the related literature in economics.

3e.g. The state-space formulation of the workhorse HANK economy features a state vector that includes a cross-
sectional distribution of households over idiosyncratic shocks as well as liquid and illiquid assets. A tensor-product
discretization of such a distribution might easily generate tens of thousands of aggregate state variables, whereas
a highly accurate sequence-space representation could be obtained using a few hundred of shock lags at quarterly
frequency.

4Because the distribution of fundamental shocks is just a primitive of the economic model at hand.

5e.g. for evaluation of marginal product of capital

6As in Azinovic et al. (2022) or Maliar et al. (2021).



To illustrate the broad applicability of our method, we proceed by applying it to solve three
models of increasing complexity. The models we solve include economies featuring multiple discrete
as well as continuous continuous shocks aggregate shocks, Markov-switching regimes as well as
uncertainty shocks. Furthermore, we show that the approach is compatible with path-following

model transformations and market-clearing layers, as introduced in Azinovic and Zemlicka (2024).

2 Literature

The idea of approximating the endogenous aggregate state by a truncated sequence of aggregate
shocks was first introduced by Chien et al. (2011) in the context of an endowment economy with
heterogeneous agents and with a single aggregate shock that takes two discrete values. In their
setting, they find that considering the history of the past five aggregate shocks is enough to yield
a high-accuracy approximation. In the context of production economies with aggregate risk, Lee
(2025) relies on truncated histories of aggregate shocks to summarize the endogenous aggregate
state. The underlying idea of the repeated transition method (RTM) of Lee (2025) is that in an
ergodic economy, all possible states will be realized along a sufficiently long simulation path. Lee
(2025) uses this fact to construct the expected continuation value function for the Bellman equations
of the agents in the economy.

Our contribution relative to this literature is generality. While those two papers also develop
sequence based global solution methods, the applicability of these methods has limitations that does
not pose a significant challenge for our method. Namely, the algorithm of Chien et al. (2011) struggles
to resolve economies featuring stronger persistence, such as production economies, because strong
persistence implies the need to keep track of long history of shocks. The RTM approach of Lee (2025)
can handle a rich set of environments, including production economies, however, its main bottleneck
lies in handling economies with large number of different aggregate shocks. At each iteration the
RTM algorithm has to construct the continuation value function for every period. To do so, the
algorithm has to split the simulated path into partitions sorted by the realized value of aggregate
shock, and then to search through each partition for a realization where the aggregate endogenous
state (e.g. wealth distribution) is closest to the next period distribution with respect to some
norm. This structure implies that the RTM algorithm works the best in environments with a small
number of discrete aggregate shock. Complex stochastic processes that can not be approximated
using a parsimonious Markov chain pose a challenge for RTM, as the length of simulated path
required for ergodic representation grows with the cardinality of shock discretization. In contrast, we
demonstrate that our method can efficiently solve rich economies featuring production and complex
driving stochastic processes. Besides that, our algorithm can handle discrete as well as continuous
shocks. Furthermore, neural networks can learn from a large number of simultaneous trajectories,
allowing for significant acceleration on modern massively parallel computing architectures.

For applications where a local method is sufficient, methods based on linearization in the se-
quence space have recently become the dominant method of choice for heterogeneous agent models
in macroeconomics following the game-changing work by Boppart et al. (2018) and Auclert et al.
(2021). Boppart et al. (2018) and Auclert et al. (2021) introduce local methods, which linearize



heterogeneous agent models with respect to aggregates, in the sequence space. These methods,
together with the accompanying libraries,” have substantially increased the tractability of hetero-
geneous agent models with aggregate risk, rendering a wide set of previously intractable models
computationally tractable.® Our method complements this literature by providing a global method,
which is hence applicable for models with larger shocks and without certainty equivalence with re-
spect to aggregate risk. The cost of having a global method is that the runtime is substantially
longer in comparison to local methods, such as the sequence-space Jacobian method by Auclert
et al. (2021).

The toolbox that enables us to approximate functions on a very high dimensional domain of
histories of possible economic shocks is deep learning. Deep learning as a tool to compute equilibria
in economic models dates back to Duffy and McNelis (2001), who use a shallow neural network to
solve a stochastic growth model with using a parameterized expectations algorithm. Norets (2012)
makes use of neural networks in the context of discrete-state dynamic programming. Closer to this
paper Azinovic et al. (2022) and Maliar et al. (2021) use neural networks to approximate equilibrium
price and policy functions, and train them to satisfy equilibrium conditions, such as first-order
optimality conditions, Bellman equations, and market clearing conditions along the simulated paths
of the economy. Azinovic and Zemlicka (2024) extend these methods by introducing market clearing
layers? and step-wise model transformations to robustly solve models with portfolio choice. Kase
et al. (2023) show how to use these methods to compute the solutions of economic models for ranges
of economic parameters, which are then estimated with maximum likelihood. Han et al. (2022) and
Kahou et al. (2021) introduce symmetry preserving neural network architectures and Valaitis and
Villa (2024) use deep learning within a parameterized expectations algorithm. Ferndndez-Villaverde
et al. (2023) use neural networks for a nonlinear forecasting rule within a Krusell and Smith (1998)
algorithm. Kahou et al. (2022) investigate the relationship between transversailty conditions and
solutions found by a deep-learning based algorithm. Druedahl and Ropke (2025) use deep learning
to compute optimal choices in a finite horizon lifecycle models with up to eight durable goods and
show how deep learning can be applied to models with discrete as well as continuous choices.

Zhong (2023) introduces operator learning, which we build on in the section 5. While previous
deep learning approaches used neural network to directly parameterize mapping from a combination
of an aggregate and idiosyncratic state to individual choices, Zhong (2023) uses neural network to
approximate the mapping from an aggregate state into a function which then returns individual
choices as a function of individual state. We extend the operator learning method of Zhong (2023)
by showing how to encode monotonicity or concavity of the predicted functions into the network
architecture. Sun (2025a) uses neural networks to approximate continuation values in combination
with otherwise standard methods. Neural network based solution methods in continuous time are
developed or applied in Duarte (2018), Sauzet (2021), Gopalakrishna (2021), Gu et al. (2023),
Gopalakrishna et al. (2024) and Payne et al. (2024).10

7See https://github.com/shade-econ/sequence-jacobian for a user friendly library for the method in Auclert
et al. (2021).

8See also Reiter (2009) and Bayer and Luetticke (2020) for linearization in aggregate variables in the state space.

9Market clearing layers are neural network architectures, designed such that an prediction by the neural network
is always consistent with market clearing.

10 Additional applications of deep learning based solution methods in variety of settings include Iolini et al. (2025)
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Our contribution relative to the existing literature on deep learning solution methods is twofold.
First, we show that deep learning can be efficiently used to construct global approximations to
the functional rational expectations equilibria in the sequence space. Second, we construct shape-
preserving neural network operator network architectures that allow us to incorporate known shape
properties of certain equilibrium functions (e.g. monotonicity and concavity of consumption function
in canonical consumption-savings problems) directly into the neural network structure.'! The ability
to guarantee monotonicity of the consumption function allows us to apply the method of endogenous
gridpoints of Carroll (2006) and hence simplify the solution algorithm for a large class of models

featuring standard consumption-savings household problems.

3 Algorithm and first application

To introduce the algorithm we first apply it to the canonical stochastic growth model of Brock and
Mirman (1972). For completeness and clarity the model description is provided section 3.1, and our

solution method is introduced in section 3.2.

3.1 Simplest illustrative model

We first explain our proposed algorithm by applying it to the simplest workhorse economy with
aggregate risk - the stochastic growth model of Brock and Mirman (1972). This model can be
accurately solved using conventional methods, so this section does not aim to claim a computational
achievement of our method. Instead, it serves to lay out the proposed algorithm as transparently as
possible, which is the easiest to do using a well-known work-horse model with well-known solution.
In sections 4 and 5 we then apply our algorithm in settings that pose a substantial, if not prohibitive
challenge for presently available numerical methods.

Time is infinite and discrete, t = 0,1, .... We consider an infinitely lived representative household
that derives utility w(C}) from consumption C;. The representative household owns the capital stock
K; and inelastically supplies a constant amount of efficient units of labor L = 1 at the equilibrium
wage wy. The single good in the economy is produced by a representative firm endowed with a

Cobb-Douglas production technology
Y, = A KPL (1)

where A; denotes stochastic total factor productivity, that evolves according to an AR(1) process

A A A
log(Ar) = p log(Ae_1) + o, 2)
and Friedl et al. (2023) (climate economics), Carvalho et al. (2025) (production networks), Duarte et al. (2021) (partial
equilibrium finite horizon model with rich asset choice), Bretscher et al. (2022) (international business cycle), Sun
(2025b) (spatial economics), Jungerman (2023) (monopsony power in the labor market) and Adenbaum et al. (2024)

(Bewley (1977) type economy).
' The idea of shape-preservation in functional approximation methods for dynamic economies was introduced by
Judd and Solnick (1994), and further developed by Cai and Judd (2012).



where €' ~ N(0,1). The firm rents capital K; and efficient units of labor L on competitive spot
markets and pays a rental rate 7€ = a4, K~ 'L on capital and a wage w; = (1 — a)A, KL~ for
efficient units of labor. In each period, the representative household chooses how much to consume
and how much to invest in capital. Capital evolves according to K1 = (1 — §)K; + Iy, where I

denotes the investment in capital. The households problem is given by

max E
{K:}e2,

3)

> Bu(Ch)
t=0

subject to :

Ct:Lwt+(1*5+7’tI<)Kt*Kt+1.

The Euler equation, which characterizes the equilibrium together with a transversality condition, is

given by
u'(Cp) = E [Bu/ (Corn) (1 = 6 +7{41)] (4)
0= (u)~ (E [&u(ctgl)(l -0+ rﬁ_l)]) . 5)

Where the Euler equation (5) is rearranged, such that errors in the optimality condition can be
interpreted as relative consumption errors. This allows for an implicit, yet interpretable accuracy
measure (see Judd, 1998). Traditionally, the model would be solved using recursive methods, where
the state of the economy X§'at¢ := [A,;, K;] € R? is given by the current level of TFP together with
the current capital stock. The solution to the model is a policy function 7(X$'*¢) = K,,, which
maps the state of the economy to the endogenous variables of interest, in this case the capital stock

for the next period.'?

3.2 Algorithm
3.2.1 Main idea

Our algorithm uses a deep neural network to approximate the policy function. Let N, denote a
neural network with trainable parameters p. Following the Deep FEquilibrium Nets algorithm (or
similar algorithms often used in the literature) the goal is to approximate the policy function by a

neural network. This would mean to find neural network parameters p, such that for all states
Np(X5H200) o m(X5104) = Ky (6)

The main idea of the algorithm we propose in this paper is to train the neural network to predict

policies not based on Xstat¢ = [A, K;] € R? but instead purely based on a truncated history of

12There are other equivalent policies, like a policy for investment or consumption, which together the budget
constraint and the law of motion for capital lead to the same choice for capital stock in the next period.



shocks, X541 := [A; 741, Ay_712, ..., Ar_1, As] € RT, such that
Np(X0T) = m(X514) = Ky (7)

At first sight, using the history of shock as an input may look like a step in the wrong direction for
two reasons: first, for T' < co the sequence of shocks is only an approximately sufficient statistic for
the state of the economy. Hence, by truncating the history, we introduce a limit to the precision
that even a perfectly trained neural network could attain. Second, the dimensionality of X647 is
sometimes larger than the dimensionality of Xstat 13 Therefore, the sequence space approach would
not work well together with approximation methods, for which a low-to-medium dimensional domain
is pivotal, such as, for example, (adapative) sparse grids.'* As we illustrate in this paper, however,
the sequence approximation to the endogenous aggregate state is promising when used together with

deep neural networks as function approximators.

3.2.2 Sufficiency of the truncated history of shocks

For our method to work, it must be that the truncated sequence of shocks is an approximate sufficient
statistic for the endogenous aggregate state of the economy, in this case capital K;. This can only
be the case if the influence of capital at period ¢t — T, K;_p, on capital in period ¢, K¢, is vanishing
as T — 00, i.e. our method relies on the ergodicity property of the underlying economy.

To see that this condition indeed holds in our stochastic growth economy, we now consider a
special case with full depreciation § = 1 and logarithmic utility u(C) := log(C). In this case, the
model admits a closed form solution with K;11 = oA, K. Taking log on both sides, we obtain
log(Kty1) = log(af) + log(A:) + alog(Ky). Tterating forward, we obtain

log(K:) = log(afB) + log(Ai—1) + alog(Ki—1)

log(af) + log(Ai—1) + a(log(aB) + log(Ai—2) + alog(Ki—2))

log(aB) + log(As_1) + allog(aB) + log(Ar_2) + alog(aB) + log(Ar_s) + a log(Ki_3))
== fla, B, A1, A0, Ar 3, Ar_r)  +al log(Ki_1), (8)

function of «a, B and the last T productivity values truncation error

where the function f depends only on the parameters «, 5 and the truncated history of the last T’
productivity values. The value of capital at ¢ — T only affects the value of capital with a coefficient
of a”', where o < 1 is the share of capital in production, typically around 0.3. The truncation error
therefore vanishes exponentially at the rate a.

As an alternative to using lagged values of productivity As—r, A¢—141,...,A+—1, we can use a

13For example in this simple stochastic growth economy.
MGee Krueger and Kubler (2004) for sparse grids and Brumm and Scheidegger (2017) for adaptive sparse grids.



truncated history of innovations to productivity €;_p, €;—7r41,...,€—1. This is because we have that

log(A;) = plog(Ai—1) + oer = p(plog(Ai—2) + oer—1) + o€
= g(p7 O, €t—Ts-- -, 61‘/) + PTAth . (9)
——

function of p, o and T + 1 last innovations truncation error

Hence, for large enough T and |p| < 1 the truncated history of innovations is an approximate
sufficient statistic for the history of productivity values, which in turn are an approximate sufficient
statistic for the endogenous aggregate state.

The same argument can also be made in a single step by observing that

log(A,) [p 0] log(A;_1) +[ o€, ] (10)
log(K:)| |1« [log(Ki—1)|  |log(as)
=M

The two eigenvalues of the matrix M are p and a and hence the impact of log(A;—r) and log(K;_1)
on log(K;) and log(A;) decays exponentially at rate max{p,«}. This also implies that in order to
accurately predict the policy functions based on a truncated history of innovations in a setting where

p is close to 1, the history needs to be very long, leading to high dimensional state X% 15

3.2.3 Remaining parts of the algorithm

The remaining parts of the algorithm follow Azinovic et al. (2022) and Azinovic and Zemlicka (2024)

and are summarized here for completeness.

Loss function We train the neural network by minimizing a loss function. Specifically, we use
the mean squared error in the household optimality condition, (5), expressed in terms of relative
consumption error. By minimizing the (weighted) Euler equation error, we train the neural net-
work policy function to take shape that is consistent with the optimal choices of the representative
household.

In order to evaluate the households optimality condition implied by the policy encoded the neural
network, N,(X5°") = K, 1, we need access to the current value of capital and productivity'¢
Xstate — [A,, K;]. Hence, even though the neural network’s input does only consist of X7
we need to also keep track of the associated state vector X' in order to be able to evaluate
the loss function. The distribution over possible ¢ 4+ 1 histories, Xij?l’T, is implied by the current
history Xfeq’T, together with the stochastic process for the exogenous variable. The distribution over
possible t+ 1 states, X31® = [A441, K] = [Ap1, Nop(X5°T)] is given by the current state X5tate,
the policy function encoded by the weights of the neural network, and the stochastic processes for

the exogenous variables.

15With a slight abuse of notation, we use X547 to indicate the approximate state in sequence space based on
either sequences of innovations (e) or values (A).
16Because we need to evaluate objects like current period output, or marginal product of capital next period.



We construct the relative Euler equation error by plugging the neural network approximation of

the history-based policy function into equation (5).

()1 (B [pu/(Cria)(1 =0+ 7))

ree(X5eaT Xstate 5y — c, -1 (11)
where

Cr = ALK 4+ (1— 6K, — Koy (12)

Cip1 = A Ky + (1= 0) Ky — Ko (13)

Kii1 = Np(X5e0T) (14)

Kipo = Np(X3557) (15)

X?TiT =[Ai-7, -, Al (16)

We define the loss function as a simple average of the square of the relative Euler equation error

evaluated across a dataset D of state-histories pairs.

D i= {(XT7, X3, (X5, X5), . (XL X)) (17)
1
(D.p) = 5 > ree(X;0T Xstate | 5)2, (18)

(X307 Xgiete)eD

Updating the neural network parameters We update the parameters using the ADAM opti-
mizer (KKingma and Ba, 2014), which is a variant of gradient descent. The update rule implied by

vanilla gradient descent is given by
pnew _ pold + alearnvpg(p,p) (19)

The ADAM optimizer modifies the equation (19) by introducing a parameter-specific adaptive learn-

ing rates rather than using a single constant learning rate for all parameters.

Sampling the most relevant state-history pairs To generate a dataset D of state-history
pairs, we closely follow the ergodic simulation scheme used in the DEQN algorithm of Azinovic
et al. (2022). We start the simulation with a random sample of initial exogenous and endogenous
states, and the simulate exogenous states using their stochastic process, and evolve endogenous states
using the current approximation of the policy function. Relative to the original DEQN method, our
algorithm additionally keeps track of truncated shock histories over the simulation. This is important
because we use the truncated histories of shocks as neural network inputs. A key advantage of using
truncated shock histories as network input is that their distribution does not change over the training,

as it is pinned-down by model primitives, i.e. shock distributions, rather than by policy functions.

10



Parameter ) B @ pA o4
Meanin relative depreciation atience capital share  persistence of std dev of

& risk aversion of capital P in production log TFP innovations log TFP
Value 2 0.1 0.95 : 0.8 0.03

3

Table 1: Parameter values chosen for the Brock and Mirman (1972) model.

3.3 Parameterization

We set relative risk aversion 'y = 2, depreciation § = 0.1, and patience 5 = 0.95. The capital share
in production is set to a = 7, and the process for logarithm of TFP has persistence p* = 0.8 and

04 = 0.03. The model parameters are summarized in table 1.

3.4 Implementation

We train a densely connected feed-forward neural network to predict the savings rate in period t,
s¢ as a function of the last T realizations of innovations to aggregate productivity, i.e., Xieq’T =
ler—Ty ... €-1,6) € RT and s, = Np(Xieq’T). Approximating the savings rate as opposed to directly
parameterizing the savings function K; 1, has the advantage that we can ensure that savings rate is
bounded in (0, 1) by applying a sigmoid activation in the output layer.!” Because of that, our policy
function is guaranteed to satisfy the budget constraint and also guaranteed to ensure non-negativity
of consumption. Given the current capital stock and productivity level, we compute the quantity of
resources on hand M; = A, K8 L'~ + (1—6)K;. The savings rate and resources on hand then imply
the current consumption Cy = (1 — s;)M; and the next periods capital K;; = s;M;. This structure
is a good illustration of why our algorithm still needs to keep track of values of state variables.
Even though states are not used as network input, they are still required to construct objects like
resources at hand, marginal products, etc.

We organize the training procedure into a sequence of episodes. An episode starts by inheriting
a neural policy function and a dataset D; consisting of state-history pairs from the previous episode.
Then we use the approximate policy function and a pseudo-random number generator to simulate

Ndata

a new training dataset of N9 state-history pairs D; = {(X5'a, Xjf’f"T)}i:l

obtain savings rate for old state : Sji = (Xseq’ ) (20)
compute implied capital in the next period : Kj1i=sji(A;. K5 + (1 - 0)K; ;) (21)
draw a new random shock : €41, ~N(0,1) (22)
obtain the new agg. state in seq. space: Xj‘fl’ ;= [[Xseq’ 2Ty €541, Z} (23)
obtain the new agg. state in state. space: XSG = (K16, Ajrral- (24)

Generating new training data in this way is computationally cheap and does not pose a bottleneck

to our algorithm. This has the advantage that we can generate new training dataset after every

17The sigmoid function is defined as sigmoid(z) := 1_'_(%
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Parameter Nquad T Nhidden 1 Nhidden 2 Nhidden 3 Noutput

# nodes # nodes # nodes # nodes

Meaning r(?c:l;e(: Efsrtlgtff CS)fIOCkS layer 1 layer 2 layer 3 output layer
' (activation) (activation) (activation) (activation)
128 128 128 1
Value 8 100 (gelu) (gelu) (gelu) (sigmoid)
Parameter ~Ndata Nmb [Vepisodes Optimizer alearn
. States per mini-batch . - learning

Meaning episode size # episodes  Optimizer rate

Value 4096 256 40’000 Adam 1075
Table 2: Hyperparameter values chosen for the neural network to solve the Brock and Mirman (1972)
model.

episode, such that no datapoint is used twice during the training. Therefore, overfitting is not a
concern. A key difference of our approach, relative to previous deep learning based approaches (e.g.
Azinovic et al., 2022) is that the distribution of neural network inputs, X% is exogenous and
hence remains stationary throughout the training. The state-space representation X°%3*¢ on the
other hand, is converging to the ergodic set of states as the neural network learns the equilibrium
policies.

After obtaining a fresh dataset, we update the policy function by running a short training loop

learn a1 d mini-batch size

using the Adam optimizer (see Kingma and Ba, 2014) with learning rate «
[Nwini-batch -~ We evaluate the gradient of the loss function using standard reverse mode automatic

differentiation.

3.5 Training

Hyperparameters We use a history of T = 100 previous productivity innovations as the ap-
proximate sufficient statistic replacing the state vector as a network input. We parameterize the
history-based policy function using a densely-connected feed-forward neural network with three hid-
den layers. Each layer consists of 128 gelu activated neurons.'® The output layer is sigmoid activated,
ensuring that the predicted savings rate lies between 0 and 1. To compute the conditional expecta-
tion in the Euler equation we use Gauss-Hermite quadrature with N9%2d = 8 integration nodes.'”
For minimization of the loss function, we rely on the basic ADAM optimizer with a learning rate of
10~% and mini-batches size of 256. In each episode, our algorithm simulates 4096 state-history pairs,

implying 16 gradient descent steps per episode. The hyperparameters are summarized in table 2.

Training progress Figure 1 shows the loss function during training. The loss function decreases

steadily during the training and reaches a value well below 10~® within a training run.?’

18The gelu activation function is given by f(z) = x®(x), where ®(x) denotes the Gaussian cumulative distribution
function.

19 An alternative would be to discretize the AR(1) process, as in Rouwenhorst (1995).

20The training run takes roughly 4 minutes on a Tesla T4 GPU.
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Figure 1: Loss function when training the neural network for 50’000 episodes to solve the Brock and
Mirman (1972) model. The loss function is the mean squared error in the equilibrium conditions of
the model, each episode consists of 4096 simulated states.

3.6 Accuracy

We now turn to assessing the accuracy of our solution. First, we inspect the error in the equilibrium
conditions on the simulated ergodic set of states. The single equilibrium condition that characterizes
the solution to the model is the Euler equation (5). The left panel in figure 2 shows the distribution
of the absolute value of equilibrium condition error expressed in units of relative consumption errors.
The vertical lines show the mean, the 99th percentile as well as the 99.9th percentile of the error
distribution. As shown in the figure, the errors in the equilibrium conditions are low, with a mean
error below 0.005% and the 99.9th percentile of errors below 0.025%.

The error in the equilibrium conditions is an implicit measure, and depending on the model at
hand, there might not be an obvious mapping between the magnitude of this implicit error measure
and magnitude of actual policy error. For a complicated model, equilibrium conditions error might
be the only available error measure. However, in this simple model, we have an access to high-quality
reference solution provided by a standard grid-based solution methods. With a dense enough grid,
the present model can be solved to very high accuracy, such that we can regard the obtained solution
as a good proxy to the true policy function. Exploiting this classical solution, in figure 2, we show a
comparison of the policy learned by the neural network, to the policy compute with standard policy
time iteration (see, e.g., Judd, 1998).

The comparison shows two things: first, the difference between the two policies is small, the mean
relative difference is below 0.005% and the 99.9th percentile is below 0.015%. This illustrates the the
neural network is able to approximate the equilibrium policies to very high accuracy. Second, when
comparing the explicit policy error (right panel) to the implicit error in the equilibrium conditions
(left panel), we can observe that both errors are of the same magnitude. This indicates that the
implicit error in the equilibrium conditions is a good proxy for the policy error. While this is a
reassuring finding, it is important to point out that this finding depends on the model, so we can

not generalize this conclusion to other models.
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Figure 2: The left panel shows the distribution of errors in the optimality condition (equation (5))
in % on 4096 simulated states after training the neural network. The solid vertical line shows the
mean error, the dashed vertical line shows the 99th percentile of errors and the vertical dotted line
shows the 99.9th percentile of errors. The middle panel compares the policy learned by the neural
network (round dots) to the policy solved for with a conventional grid-based method. The right
panel shows the distribution of errors when comparing the policy learned by the neural network to
the policy solved with a conventional method.

4 Application to OLG model

In this section, we test the performance of our algorithm in more challenging setup. We com-
pute the approximate equilibrium in an overlapping generations economy featuring portfolio choice,
non-trivial market clearing, and more complex stochastic processes. In particular, we model 72
overlapping generations of households, who consume and save. Households allocate their savings
into physical capital and risk-free bonds. While bonds are fully liquid, trading capital is subject to
convex portfolio adjustment costs, and return to capital is exposed to aggregate risk. There are three
sources of uncertainty: as in the Brock and Mirman (1972) model, the logarithm of TFP follows an
AR(1) process. Additionally, the economy switches between two regimes: normal times and disaster
times. In disaster times, the depreciation to capital is stochastic and on average higher than during
normal times. The regime process evolves according to a Markov transition matrix. Since capital is
predominantly held by older households, the disaster leads to swings in the intergenerational wealth
distribution.

We train the neural network to predict equilibrium prices and policies as a function of truncated
histories of aggregate shocks. For this economy, our algorithm keep track of the last T' realizations
of aggregate shocks, which include T' innovations to the logarithm of TFP, T innovations to the
depreciation of capital, and the last T regime realizations. The purpose of this section is to demon-
strate that our sequence space method is capable of obtaining highly-accurate approximations to
equilibria in economies featuring complex stochastic processes. The overlapping generations setup
furthermore generates an obvious dependance of current outcomes on shock realizations, reaching

far into the past.
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4.1 Model
4.1.1 Technology

A representative firm operates a Cobb-Douglas technology and produces a perishable consumption

good using labor and capital.
Y, = A KL (25)

A denotes the stochastic total factor productivity (TFP). The logarithm of TFP evolves according
to an AR(1) process

log(A) = plog(Ai—1) + o€, €' ~ N (0,1). (26)

As in the stochastic growth economy of Brock and Mirman (1972), the firm faces competitive input
and output markets. We choose consumption good as numéraire, hence price of consumption is

normalized to unity. We denote the wage by w; and rental rate of capital by rX.

4.1.2 Demographics

Each period a new representative cohort of mass 1 enters the economy and lives for H periods. We
denote the age of a cohort by h € {1,..., H}. Households are endowed with I" efficiency units of
labor, which they supply inelastically at equilibrium wage. The labor endowment is normalized such
that L = Zthl I" = 1. The age dependence of efficient labor supply serves as a device to model
a life-cycle profile of household labor income. We abstract from bequest motives, taxes and social

security.

4.1.3 Preferences

Households have time separable expected utility over consumption streams. We assume that the
felicity function takes the constant relative risk aversion form with coefficient 7. Hence, household

rank stochastic consumption stream according to:

E

H—h ‘

> st @)
i=0

where (8 denotes their patience.

4.1.4 Asset markets

Households are able to re-allocate their consumption across time and states by trading in two assets.
Two assets and infinitely many possible shock realizations next period?! imply incomplete markets

environment. Furthermore, there are two additional financial frictions. First, households are subject

21'We assume innovations to the logarithm TFP and capital depreciation to be gaussian.
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to short sale limits on capital and bonds. Second, while the bond is a liquid asset, capital is an
illiquid asset and households have to pay adjustment costs when adjusting their capital holdings.

The capital holdings adjustment costs are given by (k' !, k') = €240 (k! — kf)2 Short sale
constraints on both assets are specified as exogenous limits bifll > b and kfjll > k.

The net supply of bonds is fixed at B. Bonds can be purchased or sold at equilibrium price py,
and they deliver a risk-free payoff of 1 in period ¢ + 1. Purchasing a unit of capital in period ¢,
promises a risky payout of 1 — 8,41 + {5 in period ¢ + 1. There are two sources of risk in returns to
capital: first, the rental rate of capital TfH, depends on the total factor productivity A;11 in period

t + 1. Second, the depreciation rate of capital is stochastic as well and given by

2 % log(D normal times in ¢ + 1
, where log(D;y1) = " log(Dy) (28)

A N —
14+ Dy u + p? log(Dy) + 056?+1 disaster in ¢ 4 1

with u? < 0 and € +1 ~ N(0,1). Normal and disaster times are modeled as two discrete Markov
anon 1 — qgn—n

regimes with transition matrix IT°8ime = , where 777" and 797 denote the

1— 7.‘.d—ﬂi ﬂ.d—>d

persistence of the normal and the disaster regime respectively.

4.1.5 Household problem

Recursively formulated, the households’ problem is characterized by the following Bellman equation.

h __ h h+1
V= e i)+ B &
t+1 00t41

subject to :
h _ 1h h k1.7 h+1 h+1 h+1 1.h
cf = "wy +by + (1 =06 + 1)k — (pebfy + k) — (ks k)
lab. inc. payout of assets savings adj. costs

b< ol

k<K

In every period, households receive labor and asset income, and decide how much to invest in each
of the two assets, subject to adjustment costs and short-sale constraints. The time index and age
superscript stand for the dependence on state variables.

The solution to the household problem is characterized by a set of Karush-Kuhn-Tucker (KKT)

16



conditions for each age-group h =1,..., H — 1 and each asset

ptd' (cff) = BE [u/ ()] + A" (30)
0= A" (b} —b) (31)
0 < (b —b) (32)
0 < Abh (33)
d d
(1 + Tﬂiﬁ(kﬁﬁlv k’f)) UI(C?) =pE U/(C?Ll) (1 — 041+ 7"5+1 - Tﬂiﬁ(kfjf» kfjf)) + )\f’h
Ok Ok
(34)
0=N"(k7! — k) (35)
0< (ki) — k&) (36)
0 < AP (37)

Making use of the Fischer-Burmeister function (see, Jiang, 1999) FB(a,b) := Va2 +b2 — a — b,
a first-order condition and the corresponding complementary slackness condition can be collapsed
into a single equation for each age-group and each asset. Analogously to equation (11) for the
representative agent model, we rearrange the equations, such that, in equilibrium, the equation has

to evaluate to zero, and the deviations from zero are expressed in units of relative consumption error.

4.1.6 Equilibrium

Now, we define the recursive equilibrium of the economy

State space The state of the economy
X5t =[xy, Ay, 6, pe] € {0,1} x RT x RT x RE-IHH=2 (38)

is given by the regime indicator, y;, total factor productivity Ay, capital depreciation d;, and the

distribution of assets across the age-groups j; = { (b}, k) } | .22

Functional rational expectations equilibrium The functional rational expectations equilib-
rium of our economy consists of H policy functions %" (X§tate) = kiﬁ;"ll for investment in capital, H

policy functions %" (X3tate) = b?jll for investment in the bond, and a price function P (X3*t¢) = p,,
consistent with the KKT conditions encoding household optimal behavior and a market clearing

equation.?> The aim of our algorithm is to compute approximations to these equilibrium functions.

228trictly speaking, because we assume that households enter the economy without assets, and because of market
clearing, a sufficient statistic for the asset distribution consists of H — 1 free parameters for capital and H — 2 for the
bond.

23We use the first-order conditions of representative firm directly to compute the equilibrium wage and rental rate
as a function of the state of the economy.

17



20 30 40 50 60 70 80 90
Age

Figure 3: Efficiency units of labor over the lifecycle.

Parameter Value
H Number of cohorts 72

v Relative risk aversion 2

B8 Patience 0.96
B Bond supply 0.75
b Borrowing constr. bond 0

k Borrowing constr. capital 0
gadi Adj. cost on capital 0.1
p Persistence of log TFP 0.85
o4 Std. dev. innovations to log TFP 0.03
1) Depreciation of capital in normal times 0.1
p° Persistence of depr. in disaster 0

of Std. dev. of innovations to depreciation 0.2
ul Mean depreciation during disasters -1.10
T Prob. to remain in normal times 0.94
md—d Prob. to remain in the disaster regime  2/3

Table 3: Parameter values for the OLG model.

4.2 Parameterization

We set the model parameters to standard values in the literature. One model period corresponds to
one year, and we model H = 72 overlapping generations. The model ages h = 1 to 72 corresponds
to adult life from 21 years to 92 years. The age dependent efficient units of labor are chosen to
generate a life-cycle profile of labor income and are shown in figure 3.

The preferences are set to standard values in the literature. We set the coefficient of relative risk
aversion at v = 2 and patience to 8 = 0.96. We assume strict borrowing constraints with b = k = 0.
The adjustment costs for capital are set to €24 = 0.1. The persistence of the logarithm of TFP is set
to p = 0.85, and the standard deviation of innovations to the logarithm of TFP is set to o = 0.03.
The long-run depreciation of capital in normal times is given by § = 0.1. The parameters governing
the depreciation of capital in the diaster regime are given by p° = 0, ¢® = 0.2 and p’ = —1.10,
implying 50% higher depreciation in the disaster when log(D;) = u®. The per-period probability to
enter into the disaster state is 6% and the per-period probability to exit the disaster state is 33.33%,

implying 7" " = 0.94 and 797¢ = 2/3. The parameter values are summarized in Table 3.
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4.3 Implementation

We use a densely-connected feedforward neural network to parameterize the key set of functions

that allows us to characterize the rest of the equilibrium objects in closed-form. Those key functions

consist of the bond price, p;, as well as the investment in capital, kffll, and investment in the bond,
b?j_rll, for each age-group.?* We use the market clearing layers approach (as in Azinovic and Zemlicka,

2024), so the architecture of the neural network architectures ensures that the predicted policies are
always consistent with bond market clearing.
Following our sequence space approach, the neural network predicts the policy and price functions

as a function of truncated history of shocks. Hence, the input to the neural network is given by

S ’T
X3 = IX—(r=1)» -+ Xt—1, Xt eff(Tfly et et eff(Tfly e e e R (39)

T last regime indicators T last innovations to TFP T last innovations to deprec.

Again, we train the neural network to minimize the errors in all equilibrium conditions. The resulting
loss function consists of the 2 x (H — 1) optimality conditions for the capital and bond policies for
each age group, except the last who consumes everything. As in the previous example, the training

data in episode j are given by state-history pairs D; = {(thfte,Xjef‘T) f\fla ", We again use

learn 511d a mini-batch size

the Adam optimizer (see Kingma and Ba, 2014) with a learning rate «
Nmini-batch A fter each training episode we simulate states and histories forward to generate a new
training dataset D;,1. We evaluate the expectations over the continuous shocks 624+1 and € 1 we

use Gauss-Hermite quadrature with N9'2d quadrature nodes.

4.4 Training

Our training procedure follows the stepwise approach to solve models with multiple assets outlined
in Azinovic and Zemlicka (2024). We proceed along four steps:

First, we set the net supply of bonds to zero. Given a strict no-short sale constraint and zero net
supply market clearing condition implies that all equilibrium bond holdings had to be zero. Hence
we can first restrict our attention to solving for capital savings policy functions while keeping bond
savings fixed at zero.

Second, we train the neural network price function to learn the bond price implied by consumption
allocations of the capital-only economy. We plug the set of consumption functions obtained by
solving the capital-only economy into bond Euler equations. We invert the Fuler equations to
recover implied bond prices. The largest of the prices would be the price of the first € of bond supply
introduced into this economy. We train the price network to replicate this price as a function of
truncated histories of aggregate shocks.

Third, the previous two steps provide us with a good initial guess for the policy and price

functions in an economy with a comparatively small bond supply. We now proceed to slowly increase

24To be precise, we only need to predict the asset choice for H — 1 age groups, since, for our calibration, it is always
optimal to consume everything in the last period of life. Similarly to our approach in the Brock and Mirman (1972)
model, the neural network predicts the share of cash-at-hand invested in each of the two assets, which we then use to
construct the prediction for the asset choices.
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Parameter Value

Nduad Number quadrature nodes TFP / depreciation 4/4

T Length of history of shocks 144
[Vhidden 1 # neurons in the first hidden layer (activation) 720 (gelu)
yhidden 2 # neurons in the second hidden layer (activation) 720 (gelu)
yhidden 3 # neurons in the third hidden layer (activation) 720 (gelu)
Noutput # neurons in the output layer (activation) 214 (None)
Ndata States per episode 8192

Nmb mini-batch size 64
Nepisodes gtan ] Training episodes (capital only) 512
INepisodes gteny 9 Training episodes (pretrain bond price) 1536
Nbondsteps gtery 3 Number of incremental increases in bond supply 4
INepisodes gtany 3 Training episodes (for each intermediate bond supply) 16384
INepisodes gtan 4 Training episodes (final model) 32768
Optimizer Optimizer Adam
alearn Learning rate 1075

Table 4: Hyper-parameter values for the OLG model.

the bond supply. After every small increase in the bond supply, we retrain the neural network using
the previous solution as a starting point. We proceed until the full bond supply is reached.

Fourth, after reaching the full supply, we continue training the neural network on the final model
specifications until we reach desired level of accuracy.

The hyperparameters for our implementations are summarized in table 4.

4.5 Accuracy

We assess the accuracy of our neural network solution by investigating the errors in the equilibrium
conditions over the simulated ergodic set. Figure 4 shows the errors in the equilibrium conditions
for each age group along the simulated paths of the economy. The errors are expressed in units of
relative consumption errors. The model is solved accurately, the mean and 90th percentile of errors
is below 0.1% and the 99.9th percentile below 0.32% for both assets and all the age groups. The
mean error is around 0.03%.

In the middle panel in figure 4 we show the distribution of asset holdings over the age groups. The
savings behavior of households is driven by the life-cycle forces. Facing an increasing labor income
profile, young households are borrowing constrained. Later in their life, they start to accumulate
savings to make sure they are able to finance their later-age consumption after the drop in their
labor endowment after the age of 62.%°

The right panel in figure 4 shows the distribution of consumption across the age groups, condi-
tional on the regime of the economy. The disaster, modeled as an increase in the capital depreciation

and uncertainty, is most harmful for households around the age 80.

25While we abstract from modeling retirement explicitly, the reduction in labor efficiency units around the age of
60 serves as a proxy for the income decline associated with retirement.
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Figure 4: The left panel shows the final level of errors in the equilibrium conditions achieved by
our training procedure. The dotted line shows the 99.9th percentile, the dash-dotted line the 90th
percentile, and the solid line shows the mean. The red lines show the errors in the optimality
conditions for capital for each age group, and the blue lines show the errors in the optimality
conditions for the bonds. The middle panel shows the distribution of assets over the simulated
ergodic set of states. The right panel shows the resulting consumption by age group. The red lines
in the right panel show consumption conditional on the economy being in the normal state, and the
red lines show consumption statistics conditional on the economy being in the disaster state.

5 Application to heterogeneous households and heterogeneous

firms

Finally, we apply our algorithm to compute an approximate equilibrium in an environment with
heterogeneous households and heterogeneous firms. The households and the firms are both subject
to uninsurable idiosyncratic risk, as well as to aggregate productivity shocks, and swings in the level
of aggregate and idiosyncratic volatility. Firms operate a decreasing returns to scale technology that
produces the final good using capital and labor. The firms own and accumulate their capital. Be-
sides that, firms hire workers on a walrasian labor market, and pay dividends to their shareholders.
Firms make their decisions to maximize the present discounted value of their dividends. We assume
that firms use weighted household marginal rate of substitution to discount future cashflows, where
the weighting is proportional to household stock holdings. Households supply labor inelastically at
equilibrium wage, consume, and invest into the aggregate stock market index. Besides the fluctua-
tions in wages and stock prices induced by aggregate shocks, households are subject to uninsurable
idiosyncratic labor endowment shocks.

Because of that, the state space of the economy includes two endogenously moving distribu-
tions: the firm distribution over capital and idiosyncratic firm productivity, as well as the household
distribution over stock holdings and idiosyncratic labor endowments. The distribution of firms is
relevant to households because it determines the dividends paid on stock holdings, and the wage rate
on supplied labor. In turn, the stochastic discount factor used by firms to make their investment

decisions depends on the distribution of households.

5.1 Model

Time is discrete and infinite, t = 0,1, ....
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5.1.1 Firms and technology

There is a continuum of firms, who face uninsurable idiosyncratic risk, and aggregate risk process
featuring stochastic volatility in the spirit of Bloom et al. (2018). At the beginning of each period,
there is a continuum of firms of mass 1. As in Azinovic et al. (2023), we assume that only a fraction
T of the firms survive to the end of the period and produce the consumption good. A fraction (1—T")
of firms exits the economy, and is replaced by an equal measure of start-ups that, conditional on
surviving, start to produce in the next period.?° Each of the firms i € [0, ] operates a decreasing

returns to scale production technology.
v = Aezi (k) (1) 7, (40)

where A; denotes stochastic aggregate productivity, which affects all firms in the economy, z{ denotes
firm specific productivity realization, and « determines the elasticity of output with respect to
capital, and ¢ parameter controls the degree of returns to scale.?”

Aggregate productivity follows an AR(1) process
log(A) = p*log(Ar1) + ot 1€, (41)

where € ~ N(0,1) and o* = o(U;) € {04, 04} takes two values depending on the uncertainty
regime U; € {L, H}. The uncertainty regime follows a two-state Markov process as in Bloom et al.
(2018). We denote the transition probabilities between the uncertainty regimes with wg) I 71'%7 L=
1 —WLU’U, W%’ 1, and W}UL g=1- F}UI’ 1., respectively. The firm-level idiosyncratic productivity follows a
three-state Markov process z; € {21, 22, 23}, with 22 = (21 + 23)/2. The transition probabilities vary
with the uncertainty regime: ITIf € {II7,II};}. We are interested in the effect of a pure uncertainty
shock, i.e. in an increase in the variance of future idiosyncratic productivity without changing the
current productivity or the expected future productivity E [z% 11 \zt] level. To do so, assume that the

transition matrices in the low and high uncertainty regimes are given by

z z z z z z
T{1 Ti2 Ti3 T tu T, —2u Tig+u
z ¥4 z z z z z z
O = |n5 w5 7| Ay = |75 tu 75 —2u 7wi3+ul, (42)
TS M3y Tig T U Ty —2u Wizt u

where 0 < u < min{%ﬂﬁ, %7@2, %wf?)} parameterizes the increase in the idiosyncratic uncertainty.
This formulation allows us to keep the idiosyncratic productivity level 2}, as well as the expected
future productivity E [zz +1|zt] constant, when the economy transitions into the high volatility

regime.?8

26We assume that the capital of exiting firms is destroyed in the process.

27The capital share is /(1 — ().

28To the best of our knowledge, maintaining these two features would not easily be possible using, for example, a
Rouwenhorst (1995) or Tauchen (1986) discretization methods for an AR(1) process.
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Firms accumulate capital subject to capital adjustment costs of the form

oty = SR (1) @

where

up for k' > k
y k) = ' 44
ek =1
glown for k! < k.

We assume that ¢down

> £"P. so reducing the capital stock is associated with larger adjustment
costs than increasing the capital stock by the same percentage. Although the adjustment costs
parameter changes discontinuously at k' = k, ¥(k’, k) is not only continuous but also differentiable.
At k' = k we have (k' k) = aquzl,’k) = awgk,;’k) = 0.2 Additionally, we smooth out the jump in

the adjustment cost parameter such that

g(kl7 k) = wupfup + (]. — wup)gdown (45)

K —k
w"P = sigmoid (5 k: > , (46)

where s > 0 denotes a smoothing parameter. For large s, w"P converges to a step function, i.e.
w"P ~ 1 for sk,T_k >> 0 and w"P =~ 0 for 5% << 0.

Each firm sets its investment and dividend payout policies to maximize its objective function:
the present discounted value of its dividends, subject to a budget constraint, and a non-negative

dividends constraint. The firm problem is characterized by a following Bellman equation:

MENAE I,Eax d] + B, At+1,tvt+1(2g+1a k{+1):| (47)
t+1
subject to:
d{ = yg - wtli - Zi - ¢<k7g+1a ki) (48)
dl >d. (49)

The time index of the value function stands for the dependence of the firm problem on the aggregate

state of the economy. A;y; ; denotes the aggregate stochastic discount factor given by the distribution

29¢(K', k) is not continuous at k' = k, but the quadratic term (k’/k—1)2 ensures that ¢(k’, k) remains differentiable.
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of shareholders. The policy functions of the firms are characterized by a set of KKT conditions.

9 i i i i 0 i i i
<1 + okt w(km—l’ kt)) (1 + )‘t) =TE {AHM <1 + thl + Okt w(kt-&-% kt+1)) (1 + At—O—l)}
t+1 t+1
)\, I'E {AtJrl-,t (1 + Tifl + ak?: ¢(k§+27 ki+1)) (1 + A%}l)} 1
A= _

(1+ ot k)
50

(50)
0 < (d; —d) (51)
0< A (52)
0= (d; — d)Ay, (53)
where ! denotes the Lagrange multiplier on the non-negative dividend constraint and where ri’k

denotes the marginal product of capital installed in the firm.
i = Ak (1) 0 6 (54)

Using the Fischer-Burmeister function, we rewrite the KKT conditions of the firm problem as a

single equation ¥ B (X}, di — d) = 0., where X! is given in equation (50).

Aggregation of firms Firms hire efficiency units of labor on a competitive spot market, and
labor can move freely between the firms. There is a single equilibrium wage w, per efficiency unit
of labor, which is paid by all the firms. The labor demand of an individual firm is given by a static
first-order condition

i

wi=(1—a—0% = (1—a— Q) Ak (1)~ (55)

sli= (Atzjw(ki)a> o (56)

wt
Let uf' (2%, k') denote the distribution of surviving firms over idiosyncratic productivity and capital.
The overall mass of surviving firms is given by I' = fl ul (2%, k")di. Since we assume that all
households supply their labor inelastically, the aggregate labor supply is constant at L = 1. This
allows us to solve for the equilibrium wage as a function of the productivity level A;, and the

cross-sectional distribution of firms.
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Given the expression for the wage (59), the labor demand is given in a closed-form, as described in

equation (56). Similarly, aggregate dividends are given by
D, = /dt(zi,ki)ut(zi,ki)di. (60)

Startups FEach period, households trade shares in the aggregate index of existing firms. Owning a
share entitles a household to receive a fraction of the aggregate dividend stream. The firms that exist
in period t includes a measure I' of surviving firms that produce in period ¢, as well as a measure
(1 —T) of period ¢ startups, which start producing only in period ¢ + 1. Holding 6} shares, which
have been purchased in period ¢ — 1, entitles households to a payout of 6(I'p; + D;). This is because
period t startups can only be traded ones they exists. The stocks traded in period ¢ — 1 hence only
make up fraction I' of the stocks traded at period ¢.

We assume that a measure (1 — I') startups is replacing exiting firms every period. The value
of period t startups is (1 — I')p;. We set the initial capital of startups to be equal to the average
capital stock in the economy. The required investment is provided uniformly by all the households
who therefore also own the startups. The initial investment is not subject to adjustment costs. The

size of startup investment per household is given by

su 7 1 1.0 p’(zia kl) -
1= -1 [ G M (61)
The aggregate rents from startup creation are given by
I = (1 =T)pe — 7" (62)

The rents from startup creation are equal to the difference between the average capital stock in the
economy and the price of an equity share. We assume that the profits from startup creation are
equally distributed to all households.

5.1.2 Households

There is a unit-mass continuum of infinitely lived households. Households have time separable

expected utility preferences over stochastic consumption streams

U({ei}iZo) = E

; (63)

Zﬂtu(ct)] , where u(c) =

and where 8 denotes the patience parameter, and v denotes the coefficient of relative risk aversion.

Households’ labor endowment is stochastic and follows an AR(1) process
log(el) = p®log(el ;) + 0%, where €' ~ N(0,1). (64)

The stochasticity of labor endowment makes households subject to uninsurable idiosyncratic risk.

We discretize the idiosyncratic labor endowment process into a two-state Markov process using
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the Rouwenhorst (1995) algorithm. Households supply their efficient units of labor inelastically at
equilibrium wage. While households can save by purchasing equity shares ¢, their borrowing subject

to a short-sale limit Gti 11 > 0. The budget constraint of household i reads as
ci = ejwy + 0, (Dy + Tpy) — 01, 1py + IV (65)
The solution to the household savings problem is characterized by the following set of KKT conditions

pe'(¢f) = BE [U/(Ciﬂ)(Dtﬂ + Fpt+1)] + A (
0< A (67
0< (07, —9) (
0= (9i+1 - Q)Ai' (

Households are exposed to idiosyncratic risk because of their labor endowments and to aggregate
risk via the wage, dividends, the stock price, and the profits from startup creation. Because of
that, aggregate shocks lead to fluctuations in the wealth distribution. We denote the household

distribution by uff(e?, 0%), where e denotes idiosyncratic labor endowment, and 6 share holdings.

5.1.3 Asset markets

Households trade claims on the aggregate of existing firms. They do not trade in specific firms
but in claims to the dividends stream paid by all the existing firms. Aggregate asset demands of

households is given by
of , — / 014 (e, 0% ! (e, %) . (70)

Market clearing requires that @g_l = 1. Firms take the stochastic discount factor as given. We
assume that they use the stochastic discount factor of shareholder households weighted by their
corresponding share holdings. For a specific realization of aggregate shocks in period ¢t + 1 and
household ¢ with idiosyncratic labor endowment e’ and shares 8%, we define its stochastic discount

factor as

BE,,., [u/(clsy)]

u'(cy) ’

Ai+1,t(€i79i) = (71)
where the expectations operator is taken over the realizations of idiosyncratic labor endowment, for
a specific realization of aggregate shocks in period ¢t 4+ 1. The aggregate stochastic discount factor is

given by

AL = SN (€5, 0001 (e", 0"t (e, 67)di
L J 01 (e, 07 )t (e, 0%)di ’

(72)
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5.1.4 Equilibrium

State space The aggregate state of the economy is given by
X?gg. state = [XhAt’/if’/i{{] € {Oa 1} X R+ X RﬁZXNk X R—ZQYBXNSa (73)

where x; is an indicator denoting the uncertainty regime, A; denotes the aggregate productivity level,
and pf” and p denote the distribution of households and firms. We represent the distributions using
a finite histogram approximation (see Young, 2010) with N, x Ni and N, x Ny histogram points
for firms and households. N, and N, denote the number of histogram points along the exogenous
idiosyncratic productivity dimension and Ny and Ny denote the number of histogram points for the

capital and asset holdings respectively.

Functional rational expectations equilibrium The functional rational expectations equilib-

rium consists of firm policy functions, mf (X388 St i piy — ki 41, household policy function,

7_(_H (X?gg. state agg. statE)

,e1,07) = 0,1, as well as a price function m%(X} = p,, consistent with opti-

mizing households, optimizing firms, and market clearing.

5.2 Parameterization

One model period corresponds to one calendar year. We set patience to 8 = 0.95 and the coefficient
of relative risk aversion to v = 2. For the idiosyncratic labor process we choose p¢ = 0.871 and
0¢ = 0.246, as in Auclert et al. (2021).3° We use the Rouwenhorst (1995) method to discretize the

labor process into a two state Markov chain with states eg = 0.538,e; = 1,462 and transition matrix

0.935 0.065
= (74)
0.065 0.935
The short-sale limit is set to § = 0.
Following Bloom et al. (2018), we set the depreciation rate of capital to § = 0.1 and we choose

a =0.25 and ¢ = 0.25, consistent with a capital share of 1/3 in production. The persistence of the
logarithm of aggregate productivity is set to p* = 0.8145 and the standard deviations of innovations
to productivity is set to af = 0.0124 and ofl = 0.0199, consistent with the quarterly process in
Bloom et al. (2018) and Khan and Thomas (2008). As in Azinovic et al. (2023), we set the survival
rate of firms to I' = 0.965. There are N, = 3 idiosyncratic productivity level for firms corresponding

to 20 = 0.5, z; = 1.0, and 2z = 1.5. The corresponding Markov transition matrices are given by

0.850 0.150 0.000 0.925 0.000 0.075
I17 = [0.075 0.850 0.075| and II3; = |0.150 0.700 0.150] . (75)
0.000 0.150 0.850 0.075 0.000 0.925
30We convert the quarterly process in Auclert et al. (2021) into a yearly process.
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Parameter Value

¥ Relative risk aversion 2

B Patience 0.95

[ Borrowing constraint 0

p° Persistence id. income process 0.871

o° Std. dev. id. income process 0.246

A Persistence of aggregate TFP 0.8145

ot o Std. dev. innovations to TFP 1.24%, 1.99%
é Depreciation of capital 0.1

« Capital share in production 0.25

¢ Returns to scale 0.25

r Survival rate of firms 0.965

z Idiosyncratic firm productivity [0.5, 1.0, 1.5]
L, Transition matrices for id. firm prod. See text

HIL]} I H(é, g Persistence of uncertainty regimes 0.90, 0.79
gup gdown ¢ Adjustment costs firms 1.0, 2.5, 400

Table 5: Parameter values for the economy with heterogeneous firms and heterogeneous households.

The transition matrix between the two uncertainty regimes is given by

0.90 0.10
nv = , (76)
0.21 0.79

implying a quarterly persistence of the high uncertainty regime of 0.943 and a quarterly persistence
of the low uncertainty regime of 0.974, as in Bloom et al. (2018). The adjustment costs parameters

are set to "’ = 1.0 and £9°"" = 2.5.31 The parameter values are summarized in table 5.

5.3 Implementation

As in the previous examples, we solve the model by training neural networks to approximate a core
set of equilibrium functions, and then solve for the remaining equilibrium objects in closed-form.
Relative to the previous two applications, this model poses an additional challenge: individual
policy functions of firms and households depend not only on aggregate quantities, but also on their
corresponding idiosyncratic states. To solve for the firm and household policies, we train neural
networks to approximate a mapping from truncated histories of aggregate shocks to policy functions,
that map the idiosyncratic state variables to equilibrium policies. To do so, we build on, and extend

the operator learning approach of Zhong (2023).

5.3.1 Operator learning

Suppose we want to obtain an approximation f (X, ) to the function f(X,x), where X € RM,
r € RM2 and f(X,z) € R. Let F(R"2,R) denote the space of functions mapping R™? into R. The

31The smoothing parameter in the adjustment cost function is set to s = 400, such that £(1.01k, k) = 0.993£"P +
0.007£9°%" and £(0.99k, k) = 0.007£YP + 0.993¢down,
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idea of operator learning is to decompose the mapping f as f(X,z) = g(X)(x). Where the operator
g: X — g(X): RM — F(RM R), maps the vector X € R™ to a function g(X) € F(RY2,R). The
function g(X) is then evaluated at x.

For example, let X denote the aggregate state vector, let x denote the idiosyncratic state vec-
tor, and let f(X,z) denote a policy function, which depends on aggregate and idiosyncratic state
variables. In this example g : R™M — F(RM2 R) maps the aggregate state to a policy function.
The policy function ¢g(X) in turn, maps the idiosyncratic state x to the choice variable g(X)(z).
Let us consider the case of Ny = Ny = 1 and suppose that conditional on the aggregate state X,
the policy function is a linear function of the idiosyncratic state z, i.e. f(X,z) = g(X)(z) = axz.
Although the policy function is linear in the idiosyncratic state x, the slope coefficient oy depends
on the aggregate state X in a potentially nonlinear way. We can split the problem of approximat-

32 Second, evaluating

ing f(X,x) into two parts. First, approximating g(X) by §(X) : X — ax.
§(X)(z) = adxz. As we show in this paper, a key advantage of approximating operators, as op-
posed to directly parameterizing policy functions, is that it is easy to ensure desirable properties of

§(X)(z), such as monotonicity or concavity in z for all X.

Shape preserving operators For concreteness, let us consider the household consumption func-
tion from the model above: m¢(X8& 4t o i) — ¢ Following the operator learning approach, we
decompose the problem of predicting the individual policy into two steps: First we predict a function
7o 4 for each aggregate state X8 5% Then we evaluate the resulting function 7 ™% (ef, 0) = ¢
for all idiosyncratic states of interest.

Often, some crucial shape properties of the equilibrium functions 7’ ind(ei, 0%) are known ex-ante.
In the context of the model we present in this section, or for a large class of other macroeconomic
models, we know that the consumption function is strictly increasing and concave in the idiosyncratic
asset holding #%.33 In this section, we show a simple way to ensure that all predicted policy functions
fulfill these properties. Thereby, we effectively restrict the search space to the space of economically
more meaningful functions, increasing the robustness of our algorithm. What is more, a monotone
consumption function allows us to apply the endogenous grid method, and to obtain targets to train
the policy function with supervised learning, increasing the robustness of our approach.

The first step is to choose a functional form to approximate the function 7 ™% (ef, 67). We
consider the case where el takes two discrete values £8'd = [eg, €], where ey < e1, and where 6!
is continuous. Because e! is a discrete variable, we can split 7¢ "¢ into two univariate functions.

Then, we approximate those functions using piecewise linear interpolation on a grid of interpolation

nodes ©8"d = [90,91, .. .,91\[], where 6y < 07 < --- <Oy
id Ct,0,0,Ct,0,15---5,Ct,0,N—1
Ctgrl — ’ ’ ) c ]R2><N7 (77)
Ct,1,0,Ct,1,15+ - -5 Ct, 1, N—1

32A linear function from R — R is fully characterized by its slope coefficient. Therefore, we can essentially predict
a function by predicting a single real number.

33For example, this is the case in standard incomplete market models in the spirit of Imrohoroglu (1989); Bewley
(1977); Huggett (1993); Aiyagari (1994); Krusell and Smith (1998).
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where ¢;; ; = 7}’ ind (i 97 for a given aggregate state X8 53 and idiosynratic states e; € £&19,

and 0; € ©814. For asset holdings 6 in between grid points, i.e. ; < 6 < 0;41, we interpolate
linearly between c¢;; ; and c¢;; j+1. Conditional on an aggregate state, and fixed grids £8"d and
©#"d | the approximate household consumption functions is fully described by the 2 x N values of
Cfrid7 that are in turn parameterized by a neural network. Following our sequence space approach,
this neural network take as an input the truncate sequence of aggregate shocks Xieq’T.
Monotonicity: To ensure that the predicted consumption functions are increasing in idiosyncratic
asset holdings 6, we need to make sure that the prediction by the neural network always satisfies
Crij < Ciij+1 Vt,1,7. To ensure that this condition holds, we follow a two-step procedure. First,
Ctgrid

instead of predicting directly, the neural network predicts the boundary consumption value®*

and consumption increments

. c de ..,dcioN—
N(K0T) = dep l Loy 0N | ¢ g (78)

ct,1,0,dce 1,15, dCe 1 N—1

where we ensure that all the 2 x N predicted entries of dCtgrid are positive. This is easy to ensure, for

example, by using a softplus activation function in the output layer. In the second step we construct

id Ct,0,0,Ct,0,15+ - - s Ct,0,N—1
Ctgrl _ ) ) ) , (79)
Ct,1,0,Ct, 1,15+ - -5 Ct, 1, N—1
where
J
Clij = Crio+ Y deik: (80)
k=1

Since the architecture of our neural network guarantees that all the predicted increments dc; ;
are positive, this two step procedure guarantees monotonicity of the predicted consumption at the
interpolation nodes: ¢;;; < ¢y ;,j+1. Piecewise linear interpolation guarantees that monotonicity of
the grid values translates into monotonicity of the resulting function. A large number of gridpoints,
N, and, for example, a log-log spaced grid®® for the asset holdings ©8"d can ensure that the loss of
accuracy coming from the linear interpolation is minimal.

Concavity: In order to jointly guarantee monotonicity and concavity of the consumption function,
one needs to ensure that the slope of the consumption function is decreasing in the individual asset
holding, while it remains bounded from below by zero. Let df; := 6; — 6;_; define the distance
between two grid points ¢; and 6;_; on the asset grid ©e"d To ensure concavity and monotonicity
of consumption, we follow a three-step procedure. In a first step, we predict:

€t,0,0,ddci o1, ddei oo ..., ddego, N1

NEXoT) ~ ddcend .= ; (81)

Ct,1,0, ddCt,l,h ddCt,l,Q cee 7ddct¢1,N71

34Consumption at the lowest gridpoint in the asset grid.
35 Log-log ensures high grid density for low asset holdings, where the short sale limit might bind.
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where we ensure that ¢; ;0 > 0 and ddc;;; < 0 using a suitable activation function. In the second

step, we construct the matrix dC&", using

J
dey;; =db; X exp (Z ddcm,k> . (82)

k=1

Since all predictions ddc;;, < 0, our architecture enforces that dc;; ; /d9j is decreasing in j, en-
suring concavity of the consumption function. The exponential function further guarantees that all
deyi,;/df; > 0, making sure that the consumption function is also monotone. In the third step, we
use the cumulative sum to construct the implied consumption grid, as in equation (80).

Borrowing constraints: With a slight modification of the procedure described above, we can
additionally encode the borrowing constraint #;; > 6 = 0 directly into the network architecture.
For a given asset price and given dividends, we can convert the distance between points in the
asset grid, df;, to differences in cash-at-hand (cah) by multiplying the asset grid distance with the
payout of the asset.’® In our model: dcah; = db;(Dy + I'p;). We know that the consumption
function is increasing and concave in cash-at-hand. We can ensure monotonicity and concavity of
the consumption function by making sure that the marginal propensity to consume, i.e. dc/dcah, is
positive and decreasing. To additionally ensure that the borrowing constraint is always satisfied, it
is sufficient to ensure that the marginal propensity to consume, is bounded from above by 1. We can
achieve this by following a three step procedure, similar to the one outline in the previous paragraph.

The neural network now predicts

CS5¢,0,0, dmpct,o,h dmpct,o,z cee 7deCt,o,N—1

T id
J\/;(Xicq’ ) ~ dMPCE =
€8¢,1,0,dmpce 1,1, dmpee 12 ..., dmpes 1, N1

; (83)
where we use a sigmoid activation function to ensure that 0 < ¢s;; 0 < 1. Where cs;; o denotes the
consumption share out of cash-at-hand at the first grid point on the asset grid. We use a softplus
activation and multiplication with —1 to ensure that all predicted dmpc;; ; < 0. In the second step
we construct the consumption value at the first asset grid point ¢; ;0 = ¢s¢,4,0 X cahy ;0. Since ¢s¢ ;0
always lies between 0 and 1, the borrowing constraint is satisfied. We then obtain the marginal

propensity to consume

j .
MpPCt i,5 = CSt,5,0 X k=1 dmpct,z,k7 (84)

c,1) €(0,1), decrin
for j > 0 and obtain

Ct,0,0, MPCt 0,1, MPCt 0,25 -+ -, TNPCL O, N—1

Ct,1,0, MPCt 1,1, MPCt.1,2, -+ -, TMPC 1, N—1

MPCEd = (85)

This parameterization ensures that all predicted mpc, ; ; are positive, bounded from above by 1, and

36Other income 4.e. labor income and startup rents is constant across the asset grid, and hence can be omitted in
this calculation.
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decreasing in the index j. In the third step, we again compute the remaining consumption values

for all gridpoints

J
Ctij = Ctio+ g mpee ik X deahy ;g (86)
k=1

As in the case of parameterizing ddc, the resulting consumption grid is increasing and concave.
Because the predicted marginal propensities to consume are bounded from above by 1, this con-
struction additionally ensures, that the borrowing constraint is never violated.3” Furthermore, it
also makes it easy for the neural network to predict the consumption for borrowing constraint house-
holds extremely precisely (by predicting the maximum mpc of 1). In models, where the marginal
propensity to consume plays a central role, ensuring a precisely satisfied borrowing constraint can
be particularly important for the implied model predictions.

Shape preservation in other settings: It is worth noting that our approach of shape-preserving
operator learning is not limited to the sequence-space approach or to discrete-time models. Shape-
preserving operator learning can be analogously applied in a state-space based methods or in
continuous-time models. Lastly, note that our architecture guarantees only the monotonicity and
concavity of the predicted values at the interpolation nodes. With linear interpolation in one di-
mension, monotonicity and concavity of the values at the interpolation nodes is sufficient for the
monotonicity and concavity of the interpolating function. Shape-preserving interpolation of mul-
tivariate functions is a more complicated problem. Multivariate piecewise linear interpolation is
guaranteed to preserve monotonicity, however, concavity of the interpolating function is generally

not guaranteed for simple interpolation method in higher dimensions.

5.3.2 Firm policies

As a part of computing an approximate recursive equilibrium, we need to solve for the firms policy
functions 77 (X% %% 21 ki) = ki, and 7 (X[#% %%, 21, ki) = AL, such that they are consistent
with the optimality conditions given in equations (50) to (53). We approximate both functions using
the operator learning approach. Employing the shape-preservation techniques described above, we
make sure that the predicted KKT multiplier is non-negative and decreasing in firm capital k.
Similarly, we ensure that the firm savings function is increasing in k.

The firm-level productivity follows a three-state Markov chain. We set a grid of Ny points over

the firm capital holdings. For each aggregate shocks, we obtain following predictions

(ktv100 Ker101 oo Ker1,080-1

jegrid = kiv110 key1a1 oo kep11nv—1 (87)
k41,20 Ker121 o0 Keri2.ne—1
Aeoo Aog oo AoNe—1

AP = At1,0 A1 e ALLNL—1] s (88)
[ Ae,2,0 Ae21 -0 A2, Ne—1

37Given the consumption value at the first gridpoint is consistent with the borrowing constraint.
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corresponding to the gridded idiosyncratic firm policies for a given aggregate state at the 3 x Ny
interpolation nodes. To evaluate the policies for capital values between grid points, we rely on linear
interpolation.

We use a shape preserving operator network to ensure that the predicted values for next period’s
capital, kit1,,; are increasing in j (i.e. increasing in k;; ;). For the KKT multiplier, A, ;, we
similarly ensure that all the predictions are non-negative and decreasing in j. Following our sequence

space approach, the input to the neural networks is given by a truncated sequence of aggregate shocks

seq, T _ 1 A A A
Xt - [et—T+17 €742y -5 € s Xt—T+1, Xt—T+2 - - - aXt]- (89)
shocks to aggregate TFP uncertainty regime

In the first step, the neural networks predict

(kiv100 dkiyi01 dkirr02 oo dkii1,0Ne—1

NS(Xieq’T) = |ktr1,10 dkeyri11 dReria2 o0 dkepiaNg—1 (90)
Lkt+1,20 dhip121 dkipi22 o0 dkipion, 1
[log(A0,0) dheos dheog .. dAt,0,N;, 1

N,g\(Xieq’T) = |log(At,1,0) dAiag dheio ... dA 1, Ne—1 (91)
_IOg()‘t,2,O) d)\t,2,1 d>\t,2,2 cee d)\t,Q,Nk—l,

where we use the softplus activation in the output layer to ensure that k11, ; > 0, dkir1,,; > 0,
and d);;; < 0. In the second step, we construct thff and A" to ensure non-negativity and

monotonicity®® of both policies:

J
kit1,i,j = kig1,60 + Z dkii1in (92)
h=1
J
Atij = €xp <log(/\t,i,0) +) d/\t,i,h> . (93)
h=1

Simulation We represent the cross-sectional distribution of firms over idiosyncratic capital and
productivity using the finite histogram method of Young (2010). We base the firm histogram on
the same grid as we use for interpolation nodes of firm policy functions. Because of that, we can
evaluate the histogram transition using the gridded capital policies predicted by the neural network

without the need to resort to interpolation.

Loss function To evaluate the performance of our neural network in producing policies consistent
with firm optimality conditions, we need to define a loss function to map equilibrium conditions error
into a scalar quantity. As in Azinovic et al. (2022), we choose the standard mean-squared function
as our loss. Through the stochastic discount factor the firms’ optimality conditions also depend on
household policies and on the equity price. Because of that, the loss function also depends on the

household network N5, and on the price network N7.

38The capital policy is increasing in j, while the KKT multiplier policies is decreasing in j.
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We use Gauss-Hermite quadrature with N“# quadrature nodes for evaluating the expectation
over realizations of shocks to aggregate productivity next period, for each of the two uncertainty
regimes. Let A; := (Xﬁtam, {Xfﬁf{i}fﬁf’“’, Xieq’T,Xiiql’f}finH>, denote aggregate quantities in
sequence-space and state-space form for a given realization in period ¢, and at all 2Ngy integration
nodes for the next period t + 1. Given A;, the wage can be computed as a closed-form function
of the state-vector, as given in equation (59). The outputs of the firm network N r]f , the outputs

of the household network N5, and the output of the price network N2 allows us to construct the

aggregate stochastic discount factor Ay1 ¢, aggregate dividends (Dt, {Dt+17i}?ivch >, as well as the
stock prices (pt, {pt+1’i}§ivch). We then sample idiosyncratic states (z¢,k?),%°, and evaluate the

firm policies on those states to obtain &, , {k,, ; }55{”’, and {A}, ; }?ng Then we recover the

implied KKT multiplier, A ™P%4 from the optimality condition (50):

I'E [AHM (1 +rpfy + ﬁﬂ’(/ﬁ}z» kiﬂ)) (1+ Aiﬂ)]

(1+ o, k)

i, implied __
As =

~1. (94)

The difference between the predicted and the implied Lagrange multiplier summarizes the error in
the firm Euler equation. Besides the Euler equation error, we also need to evaluate the error in the
remaining KKT conditions.
; i, implied
)\% _ >\i implie

firm c k A i)
err™ (A, Ny, NB NG N 2, ki) = b meled (95)
t
o di —d i impli
er,rgrm (At,NFf,NZ,’,N,’f,/\/';,ZE,ki) =B ( tk;i = Vil pl ed) , where (96)
t

VB (a,b) = a+b— /a2 + b2, (97)

denotes the Fischer-Burmeister function (see, e.g. Jiang, 1999). The optimal firm policies are char-

acterized by

fi E AfA i g
errlrm(At,N;,Ng,Np,Np,Zz,kZ):

0
erpfirm (At,/\/;,./\fg,]\f,’,“7j\f,f‘,zz,kf) 0, (99)

for all A; and all 2}, k.

5.3.3 Household policies and stock price

The two additional equilibrium functions, which we need to compute are the household policy

function, and the equity price function. For households, we choose to parameterize the consumption

C (X?gg. state

function 7 ,et, 0%) = ci. For the stock price we need to approximate 7% (X288 state) — p,

We parameterize the equity price using a simple densely connected feed-forward neural network that

39We sample the idiosyncratic labor endowment states from the ergodic distribution of the corresponding Markov
chain. For the idiosyncratic capital, we sample half of the points from the capital grid, and the other half from a
uniform distribution.
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maps the truncated history of aggregate shocks into a non-negative equity price.*’

NEXT) = py. (100)

To parameterize household consumption function, we use our shape-preserving neural network op-
erator architecture, to obtain a matrix C§"'“, that represents the consumption function on a discrete

grid over the idiosyncratic assets 6; and the labor endowment e;:

id Ct,0,0,Ct,0,15---5Ct,0,N
Ctgrl — 9 ) b) , (101)

Ct,1,0,Ct,1,15 -+ -, Ct,1,N

where c¢;;; denote the consumption in period ¢ for each idiosyncratic productivity level e; in
the productivity grid £8"d = [eg,e;], and for each asset holding 6; in the asset grid ©8&"d =
[00,61,...,0n,-1], With 8y < 61 < --- < On,-1. We use our shape preserving neural network
architecture to ensure that the resulting consumption function satisfies three properties: first, it is
increasing in cash-at-hand, second, it is concave in cash-at-hand, and third, it is consistent with the
borrowing constraint 6} 11 > 0 = 0. We impose these three restrictions by following the three-step

procedure, outlined in section 5.3.1. The neural network learns to predict

CS5¢,0,0, dmpct,o,h deCt,0,2 ceey dmpct,o,zv

NYXFOT) = dMPCE = : (102)

€s¢,1,0, dmpcs 1,1, dmpeg 12 - .., dmpes 1 N

where cs;; 0 denotes the consumption share out of cash-at-hand at the first grid point on the as-
set grid. As outlined in section 5.3.1, the neural network architecture ensures that all predicted

dmpc; ;5 < 0, as well as 0 < esy ;0 < 1. In a second step we then construct

Ct,i,0 = CSt,i,0 X Cahy ;0 (103)
MPCt j = CSt,i,0 X eXh=1 dmpetik (104)
for j > 0 and obtain MPCE®. By construction, all predicted mpey ; ; are positive, bounded from

above by 1, and decreasing in the index j. In the third step, we construct the the consumption

values for all the remaining grid point

J
Ctyij = Ct,i,0 T Z mpcyik X deahy; g, (105)
k=1
deahy i j = dby;;(Dy +Tpy) (106)

completing the construction of Cfrid.

Loss function While the training objective function we use to encode the firm optimality condi-

tions is relatively standard, i.e. we minimize the relative error in the KKT conditions that charac-

40To make sure the network predicts non-negative price, we activate the output layer with a softplus activation
function.
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terize the optimization problem of the firm, as in the original DEQN algorithm, our treatment of
the household and price block is more involved. Instead of backpropagating through the complex
computational graph defined by the forward-looking optimality condition, we use the method of
endogenous gridpoints (see Carroll, 2006),* to derive the period ¢ consumption function implied by
the current guess of equilibrium functions in period ¢ + 1. Exploiting speed and robustness of the
endogenous gridpoint method, we are furthermore able to use a simple Newton-Raphson method to
solve for market clearing equity price pf°'ed together with implied consumption function ¢4 s°'ved,
Using this procedure, we obtain training targets for price and household networks, allowing us to
train these networks on a simple supervised learning loss.

From C&% solved and psolved | we can also obtain target values for the intermediate predictions, i.e.
Mpcerid selved “mpe supervised learning loss terms for household and price blocks are summarized

in the following equations:

e,,,,rlllh (At,Npc7N£,Nllf) _ (ngrid _ Ctgrid, solved) @Ctgrid, solved (107)
errgh (At,N;,N£7N§) _ (M,chrid - M,Pctgrid, solvcd) % M'PC%H(L solved (108)

D (A N NP AE) = PP 109
erry (Au, N, N, p)*Wv (109)

where @ denotes element-wise division, and py, C&¢, and MPCE"™ denote predictions by the neural

networks.

5.3.4 Loss function

Our overall loss function to train the neural networks is given by

Nsam le
1 Y k)
o A = ™ | e S ™ (A NG NE NS NG 1K)
sample ;T3
Nsample
firm 1 . firm c p k A 2 kD)
+ errs (At,Np,Np,Np,przta 1)
Nsample i—1
1 1 Np—1 2
et gt 3 S e (o AT,
=0 j=0
1 1 Np—1 2
tolt | 5y errs™ (A NG NB D)
9 =0 j=0 7
2
+u? (errf (A, Ng, NELNG))™ o

where wf™ | frm - ophhphhand wP denote the weights of the different components of the loss

function and where, with slight abuse of notation, p collects the trainable parameters of all four

neural networks.

41 For the endogenous grid method in higher dimensions, see Druedahl and Jorgensen (2017).
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5.3.5 Forward simulation

Given the aggregate state-history pair, A;, we obtain Ay by drawing new random shocks for
productivity and for the uncertainty regime according to the corresponding probability distributions,
and by evolving the endogenous state according to the current guess of equilibrium policy functions.
The evolution of the distribution of firms is computed using policy functions obtained by evaluation

of the firm network N ;“. To make sure that the evolution of the distribution of households satisfies

solved

id, solved .
CH' e "o and p§ computed using

market clearing condition, we use the market clearing policies

Newton-Raphson rootfinding algorithm.*?

Computing the target values In order to compute the target values for household consumption,
and for the stock price, €& =ed and psolved that are consistent with household optimality and

market clearing, we rely on the endogeneous gridpoint method (EGM). Specifically, given a guess
for current stock price pf'***, and current guess for equilibrium dynamics of the economy,*® we use

the EGM to derive the period ¢ consumption function implied by expectations of ¢ + 1 marginal

i, guess

utility and asset returns. We denote this consumption function ¢, and corresponding savings

function as Htifluess. Then we evaluate the excess demand function implied by household policies
generated by the current price guess ED(p§"®™, At,/\f;,/\/g,./\/;f) = O§}7" — 1. Then we update the

price guess using a Newton-Raphson algorithm

ED(p?ld7At7Ng7NgaN§)
%;MED(pgldaAtaNgv 57N§)

new old

P =y (111)

Our shape preserving neural network architecture ensures that the excess demand function is well
behaved in the price guess. Therefore, a small number of Newton-Raphson steps is sufficient to
compute the market clearing price.** Furthermore, the prediction of the neural network N 5 provides
us with an excellent starting guess for the market clearing price, once the initial training stage is

completed.*> When the market clearing price p{°'v*d is found, we save the price and the corresponding

Cgrid7 solved
t

household policies as target for supervised training.

5.4 Training
5.4.1 Outline of the step-wise training procedure

We again follow a step-wise training procedure. Our step-wise procedure ensures that our algorithm

learns reasonable firm policies, and hence generates sensible wages and dividends before it starts

42Note that the consumption policies, together with the stock price, pin down the asset policies via the households’
budget constraint.

43; e. we evaluate the evolution of the firm distribution using the firm policy functions encoded in the firm network,
and then we evaluate the evolution of the household distribution using household network as an input to solve for
market clearing price and policy.

44For GPU efficiency reasons, we use a predetermined number of Newton-Raphson steps, so that the same number
of steps is used for all the states. The derivative of the excess demand function with respect to the guessed price can
be computed efficiently using automatic differentiation.

45Hence, the algorithm might start with the initial number of Newton-Raphson iterations set to 10, which can be
reduced to 3 once the algorithm converges to sufficiently low level of price prediction errors.
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solving the household block.
Step 1: Firm side only: In the first step we only train the firm side of the model. To do so, we
set the stochastic discount factor of the firm to be equal to the patience parameter A;y;+ = 5, and

set the weights in the loss function to wf™ = qfrm

=1 and wh® = wi® = wP = 0. Imposing an
exogenous stochastic discount factor and setting weights on household and price error to zero allows
us to isolate and solve the firm problem, so we can then start solving the household problem with
a good guess for firm policies already at hand. Furthermore, we start the training procedure with
lower values for the adjustment cost parameters £€"P = 0.1 and £9°%™ = 0.25. The policies for the
simplified parameterization can be learned quickly by the neural network.

Step 2, Pre-training price and household policies In the second step, we ensure that the neural
networks parameterizing household policy and the equity price function also start with a good initial
guess. To facilitate initial convergence, we again start the training procedure in a simplified economy:
we introduce an artificial parameter 7. 7 modifies the payout of equity to p;1I'(1 —7)+ Dyy1. With
7 = 0, we recover the original economy. Setting 7 = 1 makes equity effectively a claim on ¢ + 1
dividends, reducing it into a short-lived asset. Given 7 = 0, we use pP*"" = D, as a pre-training
target for the price network A/%. For the household policy function, we use 0, , = max(0,0.76; —0.1)
for e; = eg and 0, ; = 0.70; + 0.6 for e} = e; as pre-training targets. This provides us with a good
starting guess for the price function (in the short-lived asset calibration, 7 = 1), and the household
policy functions.

Step 3, Training the firm and household side together: Retaining the simplified parameterization
of the model, we now train all price and policy functions on the full equilibrium loss function, given
in equation (110) with weights set to w!{™ = wim = ¢l = bt = P = 1.

Step 4, Step-wise model transformation to full parameterization: We then gradually change the
parameters to the desired parameterization of the full model. We linearly increase the adjustment
cost parameters to the final values of £"P = 1.0 and £"P = 2.5. At the same time, we increase 7 from
7 =1 to 7 = 0 following a quadratic schedule. Additionally, we gradually change the stochastic
discount factor used by firms from 3 to As;1+. At every step, firms use a weighted average between
B and Ayy1 ¢ as a stochastic discount factor. We start with a full weight of 1 on 8. Then we gradually
decrease it to 0 while we increase the weight on A¢14 ; from 0 to 1.

Step 5, Training with the final model parameters: We train the neural networks on the full loss
function with the final model parameterization, until we reach sufficiently low level of remaining

errors in equilibrium conditions.

5.4.2 Hyperparameters

We summarize the hyperparameters that we used to solve the model in table 6. We choose all
four neural networks, N ,’f, N, 3‘, N -, and N 5, to be densely connected feed-forward neural networks
with three hidden layers and gelu activation functions. We truncate the history of shocks after
300 periods. The input layers consists of 600 neurons, corresponding to the truncated history of
uncertainty regimes and the innovations to productivity. Each hidden layer consists of 1024 gelu

activated neurons.
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Parameter Value

T Length of history of shocks (per shock) 300
Ninput # nodes input layer 600
[Vhidden 1 # neurons in the first hidden layer (activation) 1024 (gelu)
[Vhidden 2 # neurons in the second hidden layer (activation) 1024 (gelu)
JNhidden 3 # neurons in the third hidden layer (activation) 1024 (gelu)
N Zf: 600
X,
INoutput # neurons in the output layer 'j\\[[% 288
N bl
Nk # grid points for capital grid (log spaced) 200
N? # grid points for asset grid (log spaced) 200
Navad # quadrature nodes TFP 5
Ndata States per episode 131072
Nmb mini-batch size 128
Nepisodes gtery 1 Training episodes 100
INepisodes gton 2 Training episodes 100
INepisodes gton 3 Training episodes 100
Nepisodes gton 4 Training episodes 500
Nepisodes ston 5 Training episodes 16300
Optimizer Optimizer Adam
alearn Learning rate 1076

Table 6: Hyperparameter values for the heterogeneous firms and households model.

5.5 Accuracy

In this section, we demonstrate the accuracy of our solution. Since a closed-form or a high-quality
numerical reference solution is not available, we investigate the errors in the equilibrium conditions,
implied by the price and policy functions encoded in the learned parameters of our neural networks.
We report the accuracy measures in economically interpretable units. In addition, we provide a

comprehensive set of statistics on the distribution of errors across the state space.

5.5.1 Firm policies
The optimal firm policies are characterized by the set of firms’ KKT conditions, given in equations
(50) to (53). Rearranging equation (50) we obtain:
ik i i i
I'E [At+1,t (1 T+ ﬁw(szv kt+1)> (1+ )‘t+1)}

0=
(14 5=kt k) (14 X0)

~1, (112)

where the numerator in the first term denotes the expected marginal benefit of additional capital in

the next period and the denominator gives the marginal cost in the current period. The errors in

46

equation (112) are therefore interpretable as relative marginal cost errors.*® The left panel of figure 5

shows statistics of the distribution of errors in equation (112) for different idiosyncratic productivity

46 An error of 0.01, for example, would indicate that the marginal benefit is 1% higher than the marginal cost.
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Figure 5: Remaining errors in the equilibrium conditions for the firm problem. The left panel shows

the errors in the firms’ Euler equations and the right panel shows the errors in the remaining KKT
conditions.

shocks, idiosyncratic levels of capital, and 1024 aggregate states drawn from the ergodic distribution
of the economy. The mean marginal cost error remain below 0.07%, the 90th percentile below 0.16%
and the 99.9th percentile below 0.4% for all levels of firm capital and the three productivity levels.
Even though the errors are very low everywhere, they are slightly larger in the areas of the state
space where the firm policies feature a kink due to the constraint on dividends and due to asymmetric

adjustment costs.*”

The right panel of figure 5 shows statistics of the distribution of errors in the remaining KKT
condition of firms

Ao di—d
0= bt — 113
o (5 50). (113)

where "B (z,y) denotes the Fischer-Burmeister function. Errors in equation (113) summarize vi-
olations of the all remaining KKT conditions associated with the firm problem.*® Except for very
low levels of capital, the error is virtually zero. Throughout, the mean error remains below 0.2%
and even the 99.9th percentile of errors remains below 0.8%. We conclude that the firm policies are

computed with high accuracy across the aggregate and idiosyncratic state space.

5.5.2 Household policies

As described above, the endogenous gridpoints method combined with a Newton-Raphson loop
allows us to jointly solve for the market clearing equity price and the corresponding consumption

policies of households. Hence, we can assess the accuracy of the consumption policies learned by the

47For a fixed idiosyncratic level of capital, and a fixed idiosyncratic productivity level, the mean and the percentiles
are computed across 1024 aggregate states drawn from the ergodic distribution of the economy.
48Because the Fischer-Burmeister function satisfies ’L[JFB(:E, y)=0&2>0,y>0,2y =0.
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Figure 6: Remaining errors in the equilibrium conditions for the households’ optimality conditions,
expressed in units of relative consumption errors.

neural network by comparing the neural network predictions for period ¢ to the period ¢ consumption
policies implied by household optimality and market clearing prices.*® Figure 6 shows the accuracy
of the consumption function learned by the neural network across the aggregate and idiosyncratic
state space. For all the idiosyncratic states, the mean error remains below 0.08%, the 90th percentile
below 0.17%, and the 99.9th percentile below 0.4%.°° We conclude that the household policies are

approximated to a high accuracy.

5.5.3 Stock price

The left panel of figure 7 shows the distribution of discrepancies between the equity price predicted by
the neural network relative and the market clearing equity price obtained using the EGM-Newton-
Raphson algorithm. The mean error of the price prediction is 0.17%, the 90th percentile 0.35%
and the 99.9th percentile is 0.80%. The right panel of figure 7 shows the price predictions by the
neural network together with the computed market clearing prices in a scatter plot against aggregate
dividends. While the accuracy of the price function is slightly lower than the accuracy we achieved
for the policy functions of firms and households, it remains high. The error in the asset demand, as
implied by the predicted price and the predicted policy functions is lower and below 0.1% over the

whole simulated ergodic set.

49Where we evaluate the expectations over t + 1 objects using policies and prices encoded by neural networks.
50For a fixed idiosyncratic asset holding and a fixed idiosyncratic productivity level, the mean and the percentiles
are computed across 1024 aggregate states drawn from the ergodic distribution of the economy.
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Figure 7: Prediction errors for the price network. The left panel shows the distribution of relative
prediction errors across 1024 aggregate states drawn from the ergodic distribution of the economy.
The right panel shows the network predictions (blue circles) and the solved market clearing prices
(red dots).

5.6 Inspecting the learned equilibrium policies
5.6.1 Firms

We turn to inspecting the equilibrium policies. The left panel of figure 8 shows the density of
firms across the capital grid for different simulated aggregate states. We can see that the distribu-
tion of firms across capital varies substantially. Due to the decreasing returns to scale production
function, together with capital adjustment costs, this variation directly affects aggregate wages and
dividends (see, e.g., equation (59)), such that the households problem depends crucially on the firm
distribution.

The middle panel in figure 9 shows the dividend policies of firms for different capital levels
(horizontal axis) and different idiosyncratic productivity levels (represented by different colors).
The shaded lines show the policies for several randomly selected aggregate states, and the solid lines
show the mean taken over aggregate states. Each of the policy functions shows two kinks: at the
first kink, the non-negativity constraint on dividends stops to bind. At the second kink, firms switch
from adjusting capital upward to adjusting it downward. The exact location of the kinks depends
on the productivity level and the firms capital as well as on the aggregate state of the economy.

Similarly, the right panel shows the policy functions for the KKT multiplier on the dividend
constraint. Perhaps surprisingly, the multiplier for very low values of capital is larger for the low
productivity values than for the high productivity values. This is the case because, while the firms
are constraint for all three productivity levels, the high productivity firms are able to choose a higher

capital level for the next period.
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Figure 8: Left panel: density of firms across the capital grid for different simulated aggregate states.
Middle panel: dividends policy for firms over the capital grid (horizontal axis) and across different
productivity levels (different colors). The shaded lines show the policies for different aggregate states,
and the solid lines show the average taken across the sample of aggregate states. Right panel: firms’
KKT multiplier associated with the non-negative dividend constraint over the different capital and
productivity levels, as well as across different aggregate states.

5.6.2 Households

Figure 9 shows the household policies predicted by the neural network. Each of the shaded lines
corresponds to a different aggregate state, and the solid lines correspond to the mean, averaged over

aggregate states, for a specific idiosyncratic productivity and wealth level.
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Figure 9: Left and middle panel: consumption function of households for their idiosyncratic produc-
tivity level (in different colors) and for different idiosyncratic asset holdings (horizontal axis). The
shaded lines show the consumption policies for several different aggregate states, and the solid lines
show the mean across aggregate states. Right panel: marginal propensity to consume for different
productivity and wealth levels, as well as for several aggregate states.

As figure 9 shows, consumption varies substantially between different aggregate states. We can
also see that, for each of the aggregate states, consumption is increasing and concave in the wealth
of households.

important feature of the consumption functions is guaranteed. We achieve this using the three step

Our shape preserving neural network architecture ensures that this economically

procedure described above. The households’ marginal propensities to consume are constructed from
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the predictions of the neural network, such that the marginal propensity to consume, for a given
aggregate state and idiosyncratic productivity level, is always decreasing and convex in cash-at-hand,
as well as bounded between 1 and 0 (see the right panel in figure 9). This ensures on the one hand
the monotonicity and concavity of the consumption function, and on the other hand facilitates the
precise prediction of the marginal propensity to consume (and hence consumption) of borrowing

constraint households.

6 Conclusion

We introduce a new algorithm for computing global solutions of dynamic stochastic general equi-
librium models. Exploiting the ergodic property of a large class of dynamic economies, we rely on
the truncated history of aggregate shocks as an approximate sufficient statistic for the aggregate
state. Based on this approximation, we use deep neural networks to parameterize the mapping from
truncated aggregate shock histories to equilibrium objects of interest using deep neural networks.
Finally, we train our neural networks to satisfy all the equilibrium conditions along simulated paths
of the economy.

We illustrate the accuracy and wide applicability of our algorithm by solving three example
economies. As a first example and proof of concept, we solve a simple stochastic growth model.
This allows us to compare our solution against a high-accuracy solution that can be obtained using
conventional grid-based methods. Second, we solve an overlapping generations model with 72 age
groups, portfolio choice, and multiple sources of aggregate risk. The overlapping generations model
shows that the sequence space approach is applicable, also when there is a clear dependence of equi-
librium objects on long histories of shocks: the shocks experienced during an agent’s lifetime affect
their subsequent equilibrium outcomes. The model includes stochastic shocks to productivity and
depreciation, which are drawn from normal distributions, together with a Markov regime switching
model with two discrete states. We thereby illustrate that our method is capable of solving models
with several aggregate shocks of different types. As a third example, we consider an economy where
a continuum of heterogeneous households trade in a long-lived financial asset, which constitutes a
claim to the dividends paid by a continuum of heterogeneous firms, who operate a decreasing returns
to scale production technology and face asymmetric adjustment costs on capital. Additionally, the
economy is subject to stochastic fluctuations in aggregate productivity and in the level of aggregate
and idiosyncratic uncertainty. The state hence includes two endogenously moving distributions: the
distribution over wealth and productivity on the household side and the distribution of firms over
productivity and capital. We show that we solve all three models accurately, with mean relative
errors in equilibrium conditions below 0.1%.

To solve models with aggregate and idiosyncratic risk, we introduce shape preserving operator
learning: we train deep neural networks to predict idiosyncratic policy functions as a function of the
truncated history of aggregate shocks, such that we can guarantee the predicted policy functions to be
monotone or concave in key idiosyncratic state variables, such as household wealth. These guaranties
allow us to use the method of endogenous gridpoints and a simple, yet-reliable, Newton-Raphson

algorithm to obtain high-quality training targets for supervised learning of household policies and
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the market clearing stock price, further increasing the robustness of our deep learning algorithm.
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Abstrakt

V tomto ¢lanku prezentujeme novy algoritmus hlubokého uceni pro aproximaci funkciondlnich
rovnovaznych stavii v dynamickych stochastickych ekonomikdch s raciondlnimi ocekévanimi. K
parametrizaci rovnovaznych objektl ekonomiky pouzivame hluboké neuronové sité, a to jako funkci
zkracenych historii agregatnich exogennich Sokl. Neuronové sité¢ trénujeme tak, aby spliiovaly vSechny
rovnovazné podminky podél simulovanych trajektorii ekonomiky. Pro ilustraci efektivity nasi metody
feSime tii ekonomiky rostouci slozitosti: stochasticky riistovy model, vicerozmérnou ekonomiku
prekryvajicich se generaci s vice zdroji agregatniho rizika a nakonec ekonomiku, ve které jak domacnosti,
tak firmy Celi nepojistitelnému idiosynkratickému riziku, Sokim do agregatni produktivity a Sokim do
idiosynkratické i agregatni volatility. Dale ukazujeme, jak sestavit praktické architektury neuronovych
reakénich funkci, které zarucuji monotonicitu predikovanych reakénich funkci, coz usnadnuje vyuziti

metody endogenni miizky ke zjednoduseni ¢asti naseho algoritmu.
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