
CERGE-EI
Center for Economic Research and Graduate

Education - Economics Institute
Charles University

Causal Machine Learning for
Heterogeneous Treatment Effects

An Application on Optimal Treatment Assignment

Master’s thesis

Author: Bc. Klaus Hajdaraj

Supervisor: Paolo Zacchia, Ph.D.

Year of defense: 2025

1

https://www.cerge-ei.cz/
https://www.cerge-ei.cz/
https://www.cerge-ei.cz/
mailto:Klaus.Hajdaraj@cerge-ei.cz
mailto:Paolo.Zacchia@cerge-ei.cz


Declaration of Authorship

The author hereby declares that he or she compiled this thesis independently, using
only the listed resources and literature, and the thesis has not been used to obtain any
other academic title.

The author grants to Charles University permission to reproduce and to distribute
copies of this thesis in whole or in part and agrees with the thesis being used for study
and scientific purposes.

Prague, January 1, 2025 Klaus Hajdaraj

2



Abstract

With the rising popularity of machine learning for uncovering complex patterns, there
is growing interest in leveraging these techniques to understand how interventions affect
individuals differently based on their characteristics, a concept known as heterogeneity
(HTE). This paper compares two machine learning methods for predicting HTEs for
optimal treatment assignment or so-called targeting: the causal forest (CF), a direct
tree-based method, and the causal neural network (CNN), an indirect deep learning
method. I use an empirical dataset from an online experiment on incentivizing manual
labour to compare the methods. I show that CF outperforms CNN; assigning individual
optimal treatments based on CF yields higher outcomes than assigning the overall
best treatment to all individuals. Further, I address the winner’s curse in the optimal
targeting context by introducing two shrinkage techniques: the James-Stein and the
Variance shrinkers, which improve the performance of ML methods in assigning the
optimal treatments. This study contributes to the literature by providing a detailed
guideline for selecting and comparing ML methods for optimal targeting and introducing
shrinkage techniques to adjust upward bias (overestimation). The findings highlight the
importance of accurate HTE estimation in improving optimal targeting, and recommend
development of personalized treatments. Personalized treatments can improve overall
outcomes by tailoring policies to individuals’ characteristics.

JEL Classification C14, C21, C45, C52, C53
Keywords optimal targeting, heterogeneity, machine learn-

ing, causal forest, neural networks, shrinkage es-
timator

Title Causal Machine Learning for Heterogeneous
Treatment Effects: An Application on Optimal
Treatment Assignment

Author’s e-mail Klaus.Hajdaraj@cerge-ei.cz

Supervisor’s e-mail Paolo.Zacchia@cerge-ei.cz

3

http://ideas.repec.org/j/C14.html
http://ideas.repec.org/j/C21.html
http://ideas.repec.org/j/C45.html
http://ideas.repec.org/j/C52.html
http://ideas.repec.org/j/C53.html
mailto:Klaus.Hajdaraj@cerge-ei.cz
mailto:Paolo.Zacchia@cerge-ei.cz


Abstrakt

S rostoucí popularitou použití strojového učení při odhalování komplexních souvislostí
roste zájem o využití těchto technik k pochopení toho, jak intervence ovlivňují jed-
notlivce odlišně v závislosti na jejich charakteristikách, což je koncept známý jako
heterogenita (HTE). Tato práce porovnává dvě metody strojového učení pro před-
povídání HTE za účelem optimálního přiřazení treatmentu nebo tzv. cílení: kauzální
les (CF), přímou metodu založenou na stromech, a kauzální neuronovou síť (CNN),
nepřímou metodu hlubokého učení. K porovnání metod používám empirický soubor
dat z online experimentu zaměřeného na motivaci k manuální práci. Ukazuji, že CF
překonává CNN; přiřazení individuálních optimálních treatmentů na základě CF přináší
lepší výsledky než přiřazení celkového nejlepšího ošetření všem jednotlivcům. Dále se
zabývám prokletím vítěze v kontextu optimálního cílení zavedením dvou technik sm-
ršťování: smršťovač Jamese-Steina a smršťovač rozptylu, které zlepšují výkonnost ML
metod při přiřazování optimálních treatmentů. Tato studie přispívá k literatuře tím,
že poskytuje podrobný návod pro výběr a porovnání ML metod pro optimální cílení
a zavádí techniky smršťování pro úpravu vychylení směrem nahoru (nadhodnocení).
Zjištění zdůrazňují význam přesného odhadu HTE pro zlepšení optimálního cílení a
doporučují vývoj personalizovaných treatmentů. Personalizované cílení může zlepšit
celkové výsledky díky přizpůsobení zásahů charakteristikám jednotlivců.
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Introduction

Economists and professionals across various fields are keenly interested in understand-
ing the causal effects of policies and interventions. Over the past few decades, this
interest has spurred significant advancements in microeconometrics and statistics, par-
ticularly in identifying and estimating different average causal effects (see, e.g., Imbens
and Wooldridge 2009; Athey and Imbens 2017, and references therein). However, fo-
cusing solely on average effects often overlooks how these causal effects vary across
individuals with different observable characteristics. Therefore, assuming that every-
one benefits equally from the intervention is often unrealistic. Intuitively, treatment
effects can vary across different subgroups within the population, depending on their
observable characteristics or covariate values. In other words, there is heterogeneity in
the treatment effects (HTE). For instance, based on individual observed characteristics,
identifying which individuals benefit most from active labour market policies, promo-
tional campaigns, or medical treatments is crucial for efficient allocation of public and
private resources.

Recent progress in machine learning (ML) techniques, coupled with the availability
of large datasets and developments in causal inference literature, has brought estima-
tion of HTEs to the forefront of research. Central to this discourse is whether to use a
particular treatment and whether we can determine which treatment will be optimal.
Consequently, a primary application of identifying HTEs is in the assignment of opti-
mal treatments, where the effectiveness for each individual is assessed based on their
predicted treatment effect.

Various research disciplines have developed systematic methods for estimating causal
HTEs. These methods adapt standard ML algorithms to flexibly estimate heterogeneity
across potentially large numbers of covariates. Available estimators employ techniques
such as random forests (Wager and Athey 2018; Athey et al. 2019), LASSO (Tian et al.
2014; Chen et al. 2017), deep neural networks (Johansson et al. 2016; Schwab et al.
2018), and Bayesian ML approaches (Taddy et al. 2016).

Applied studies utilizing these methods have recently emerged in economics (An-
dini et al. 2018; Ascarza 2018; Strittmatter 2023). In particular, the medical sector
and the field of health economics have shown increasing interest in patient-centred out-
comes (Willke et al. 2012), which are central to HTE estimation and optimal treatment
assignment. Other economic applications, such as incentivizing effort in employee man-
agement (DellaVigna and Pope 2018) or evaluating the effectiveness of public policies
(e.g., education, tax policy) should also be considered. From a business standpoint,
understanding the varying impacts of advertising or marketing offers on consumer pur-
chases has also become of significant interest.
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Given the rapidly expanding literature on ML methods for treatment effect estima-
tion, I investigate a pertinent question about which methods perform best for optimal
treatment assignment in a setting in which multiple treatments are available and
how they can effectively be compared using empirical data.

In this paper, I present the causal forest (CF) method (Wager and Athey 2018), a
tree-based approach for direct estimation of HTEs, and causal neural networks (CNN)
(Farrell et al. 2021), an indirect semiparametric method based on feed-forward neural
networks. I compare these methods for predicting HTEs for optimal treatment assign-
ment using an empirical dataset on incentivizing manual labour in an online experiment,
employing a comparison technique based on Hitsch et al. (2024) and the R-learner loss
function structure from Nie and Wager (2021).

To compare the two methods, I use data 2 from an experiment conducted by Opitz
et al. (2024) on Amazon Mechanical Turk (MTurk), a platform primarily used for
small-scale contract labour but increasingly popular for behavioural experiments. Using
MTurk not only facilitates collection of large-scale samples and reduces payoff costs but
also provides a more diverse participant pool than do traditional university-based ex-
periments, which potentially offers better external generalization (Follmer et al. 2017).

I find that the CF method achieves the best performance in assigning individuals the
optimal treatment from a given set of treatments. The results indicate that selecting
treatments based on the highest predicted treatment effect from the CF results in
higher outcome levels than simply assigning the overall best-performing treatment to
all individuals. In contrast, the CNN method performs only marginally better than
random treatment assignment and significantly worse than the CF method.

Moreover, a significant challenge in optimal treatment assignment using HTEs is the
winner’s curse. Treatments with overestimated effects are more likely to be identified
as optimal because the selection is based on the highest predicted treatment effect.
Therefore, I investigate whether shrinkage estimators can enhance the performance of
ML methods in assigning optimal treatments and how their application affects the initial
results compared to when shrinkage techniques are not used. I outline the concept of the
winner’s curse, propose shrinkage estimators as a potential solution, and evaluate their
effectiveness when applied to the ML predictions on the empirical dataset. In addition,
I introduce a modified version of both shrinkage methods that adjusts estimates toward
the average treatment effect across all considered treatments instead.

I find that employing shrinkage methods can enhance the performance of predictions
in most cases. The shrinkage estimators performed differently across the two models and
the treatment subsets. Notably, shrinkers that adjust predictions toward the overall av-

2Thesis replication files, including Python source code and data are available at:
https://github.com/klaushajdaraj/ml-treatment-effects
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erage outcome performed less accurately when analyzing all six treatments but showed
improved performance when focused on a subset of four similar treatments. Overall,
the James-Stein Shrinker resulted in greater performance improvements than did the
Variance Shrinker. The CF method benefited significantly from applying shrinkage
estimators, whereas the CNN method did not show notable improvements.

Two studies closely related to this paper are those by Opitz et al. (2024) and Hitsch
et al. (2024). Opitz et al. (2024) examine the performance of targeted assignment of
incentive schemes, conducting two large-scale experiments, each involving an extensive
personality trait survey followed by a manual labour task. The first experiment served
for pre-analysis and model training, while the second compared the treatment assign-
ment performance using the Virtual Twin Random Forest technique. The data utilized
in the empirical section of this paper is retrieved from the first experiment of Opitz
et al. (2024). They show that previously captured personality traits could predict par-
ticipants’ work performance. Thus, employers can leverage information about worker
heterogeneity to enhance the effectiveness of incentives through targeted assignments
based on individual characteristics. Furthermore, Opitz et al. (2024) found that assign-
ment based on predictions using the Virtual Twin Random Forest yielded significantly
higher outcomes than assigning the overall best-performing treatment from the first
experiment.

Examining whether personality traits affect participant performance is beyond the
scope of my study. However, this thesis differs from Opitz et al. (2024) in two significant
ways. First, I aim to empirically and thoroughly compare two ML methods for optimal
treatment assignment. To provide external validity for the predictions, I employ 100
repetitions of three-fold cross-validation. Second, I address a critical issue in optimal
targeting not considered by Opitz et al. (2024): the winner’s curse. I present the
problem of the winner’s curse and propose two families of shrinkage estimators as a
solution. The application of shrinkage estimators in the context of estimating treatment
effects for optimal targeting is novel and not extensively developed in prior literature.

Additionally, although I employ a methodology similar to that used by Hitsch et al.
(2024) to compare the two ML methods, this thesis differs from their study in several
key aspects. First, their application focuses on customer targeting frameworks, such as
companies using catalogues, emails, and display ads, whereas my empirical application
centres on incentive schemes for worker performance. Second, they concentrate on
Treatment Effect Projection (TEP) and causal KNN regression techniques, while I
focus solely on CF and CNN.

The contributions of this paper to the growing literature on ML for optimal treat-
ment assignment are twofold. First, I aim to provide a guideline for systematically
choosing and comparing different ML estimation methods to predict optimal targeting
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policies, to effectively estimate individual-level effects of targeting efforts. Second, I
introduce a novel application of shrinkage estimators for ML methods in the context
of optimal treatment assignment. This is the first study to use shrinkage techniques to
estimate treatment effects for optimal treatment targeting.

Investigating methods for optimal treatment assignment is crucial, as it enables
targeted interventions that maximize treatment efficacy while minimizing potential ad-
verse effects. By employing ML for causal inference, researchers can more accurately
predict individual responses to different treatments, and ensure that resources are as-
signed to those who will benefit the most. Consequently, optimal targeting can improve
policymaking by offering personalized interventions.

The remainder of this paper is organized as follows: First, I discuss related literature
in Section 2. Then, I present machine learning methods in Section 3. In Sections 4
and 5, I outline the data and empirical strategy, including ML training and tuning,
model comparison strategy and shrinkage estimators. Further, section 6 presents the
results for non-shrinkage and shrinkage use cases, while section 7 discusses the results
and potential limitations. Finally, Section 8 presents the conclusions. 3

3Parts of this paper were edited using Grammarly AI editing tool to refine the language and enhance
clarity.
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Literature Review

2.1 Causal Inference Fundamentals

A vast amount of econometrics literature focuses on estimating causal effects. In the
last three decades, the potential outcome framework, often termed the Rubin Causal
model, has become a predominant method for addressing causal inference issues. In
this model, each individual i has a potential outcome Yi(T ) for each treatment level T ,
reflecting the outcome if the individual were subject to that treatment. According to
foundational work by Neyman (1923), the causal effect of a treatment or intervention is
typically defined as the difference between the actual observed outcome and the hypo-
thetical outcome that would have occurred if the treatment had not taken place. This
definition essentially establishes a basis for the concept of counterfactuals, which Rubin
(1974) later formalized into the extensive potential outcomes framework. This frame-
work has since become a cornerstone in the field of causal inference research. However,
while we can observe the treatment an individual receives and its resulting outcome,
the outcomes for alternative treatments that the individual did not receive remain ul-
timately unobserved, presenting what Holland (1986) describes as the "fundamental
problem of causal inference". Outside of science fiction, where parallel universes might
be imagined as observable, measuring causal effects at the individual level is impossi-
ble. Consequently, researchers focus on estimating average causal effects (ATE). When
applying a binary treatment T , the potential outcomes for the treatment and control
group are recorded as Y 0 and Y 1, correspondingly. The treatment effect for the unit i

is expressed as:
TE = Y 1

i − Y 0
i

In this case, the ATE for the sample is calculated as:

ATE = E[Y 1
i − Y 0

i ]

Another widely studied method in the context of ATE is the average treatment
effect on the treated (ATET), expressed as:

E[Y 1
i − Y 0

i |Ti = 1] = E[Y 1
i |Ti = 1]− E[Y 0

i |T = 1]

This expression illustrates the counterfactual nature of causal effects. The first term
is the potentially observable metric, that represents the average outcome of the treated
group. In contrast, the second term denotes the average outcome of the treated group if
they had not undergone the treatment, an unobservable quantity. Thus, we can employ
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an econometric identification strategy (Angrist and Krueger 1999) that provides a
consistent estimate of this unobservable term.

2.1.1 Challenges and Methods for Estimating Causal Effects

Although randomized control trials (RCTs) are considered the gold standard for study-
ing causal relationships, as randomization eliminates much of the bias inherent with
other study designs, RCTs have drawbacks, including ethical risks, high costs in terms
of time and money and problems with generalizability. Observational studies have sev-
eral advantages over RCTs, including lower costs and longer timeliness. However, in
many observational studies that assess the impact of a policy or intervention, estimating
the average treatment effect (ATE) is a key challenge due to the presence of selection
bias (or omitted variable bias).

Selection bias occurs because the treatment group differs from the control group for
reasons beyond the treatment status per se. Merely comparing treated and untreated
units using ATE may yield a misleading estimate of the causal effect. Because the
issue of omitted variables is not directly related to the sampling variance but rather
concerns population quantities, the difference in outcomes by observed treatment status
is expressed as:

E[Yi|Ti = 1]− E[Yi|Ti = 0] = E[Y 1
i |Ti = 1]− E[Y 0

i |Ti = 0]

= E[Y 1
i − Y 0

i |Ti = 1]⏞ ⏟⏟ ⏞
ATET

+E[Y 0
i |Ti = 1]− E[Y 0

i |Ti = 0]⏞ ⏟⏟ ⏞
selection bias

The issue of selection bias drives the need for implementation of random assignment
in experiments to allow estimation of treatment effects. With the random assignment
of treatment Ti, E[Yi|Ti = 1]−E[Yi|Ti = 1] = E[Y 1

i − Y 0
i ] = E[Y 1

i ]−E[Y 0
i ]. Replacing

E[Yi|Ti = 1] and E[Yi|Wi = 0] with their respective sample counterparts provides a
consistent estimate of ATE.

To address potential selection bias that could affect the estimation of ATEs, policy-
makers must disentangle the impact of the intervention from other confounding factors
influencing the outcomes. As a result, evaluating ATEs in observational studies ne-
cessitates adjustments for differences in baseline covariates, because the treatment and
control groups may be imbalanced in terms of both measured and unmeasured covari-
ates. The literature offers several approaches on how to handle missing counterfactuals
in treatment effects evaluation theory.

Without making adjustments for baseline covariates, the ATE in observational stud-
ies can be estimated using a complete-case estimator expressed as follows:
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ˆ︁ATE =

∑︁n
1 TiYi∑︁n
i=1 Ti

−
∑︁n

i=1(1− Ti)Yi∑︁n
i=1(1− Ti)

(1)

The ˆ︁ATE estimate is subject to bias and must be adjusted to account for variations in
baseline covariates.

A key assumption in causal inference is the unconfoundedness or conditional in-
dependence assumption (Rosenbaum and Rubin 1983). This assumption asserts that,
given a set of observable covariates Xi that is unaffected by the treatment, the po-
tential outcomes Y 1

i and Y 0
i are independent of the treatment assignment Ti. The

unconfoundedness assumption is expressed as:

(Y 1
i , Y

0
i ) ⊥ Ti|Xi (2)

Unconfoundedness goes by other names in different fields, including ignorability (Rosen-
baum and Rubin 1983), the back-door criterion (Pearl 2009), and exogeneity (Wooldridge
2015).

Another crucial assumption is the common support condition which is expressed
as:

0 < P (Ti = 1|Xi) < 1,∀i (3)

This assumption requires that, within the observed data, every individual or unit has a
non-zero probability of receiving any level of treatment. In other words, the treatment
assignment must vary among the study population. This condition ensures that indi-
viduals with diverse characteristics are represented in both the treatment and control
groups. Violating the positivity assumption—where certain groups have no chance of
receiving the treatment—can lead to biased estimates, and create challenges in gener-
alizing the study findings to a broader population.

Lastly, an additional key assumption is the stable unit treatment value as-
sumption (SUTVA). This assumption asserts that the treatment of one sample unit
does not affect the outcome of another sample unit.

Using unconfoundedness and common support assumptions, Rosenbaum and Ru-
bin (1983) introduce the concept of the propensity score (PS), which represents the
probability of receiving treatment given a set of covariates. Under the conditional
independence assumption, the PS is given by

p(Xi) = P (Ti = 1|Xi) = P (Ti = 1|Y 1
i , Y

0
i , Xi) (4)

Following that, Kreif et al. (2013) describe a widely used parametric model for
estimating the propensity score, the logistic regression model, which is expressed as

14



p(Xi, η) =
eη

TXi

1 + eηTXi
(5)

where η represents a vector of parameters that can be estimated using the maximum
likelihood estimate η̂ based on the observational data (Ti, Xi), where i = 1, ..., n.

The propensity score enables two distinct methods for estimating ATEs: inverse
propensity weighting (IPW) and propensity score matching (PSM). Both ap-
proaches address the differences between treatment and control groups by adjusting for
baseline covariates, thereby reducing selection bias. The IPW method assigns weights
to each observed outcome based on the inverse probability of it being observed, while
the PSM method creates a matching control group that closely resembles the treatment
group in terms of observed covariates using the propensity score. Kreif et al. (2013)
show that the IPW estimate of the ATE is derived by reweighting the observed outcomes
for both treatment and control groups using the inverse of the estimated probability of
receiving the observed treatment:

IPW =
1

n

n∑︂
i=1

TiwiYi −
1

n

n∑︂
i=1

(1− Ti)wiYi (6)

where wi is expressed as wi =
1

p(Xi,η̂)
. The validity of the IPW estimate depends on

the proper specification of the propensity score model p(Xi, η).
Kreif et al. (2013) suggest also using generalized linear models, g1(Xi, β1) and

g0(Xi, β0) to estimate the treatment effects:

ˆ︁REG =
1

n

n∑︂
i=1

g1(Xi, β̂1)−
1

n

n∑︂
i=1

g0(Xi, β̂0) (7)

Here, β̂1 and β̂0 represent the maximum likelihood or least squares estimates of
parameter vector β1 and β0.

By combining the models for the propensity score, Robins et al. (1994) propose a
hybrid model of the propensity score and regression methods to estimate ATE, called
augmented inverse propensity weighting (AIPW) method, expressed as:

ˆ︂AIPW =
1

n

n∑︂
i=1

Tiwi[Yi − g1(Xi, β̂1)]−
1

n

n∑︂
i=1

(1− Ti)wi[Yi − g0(Xi − β̂0)]

+
1

n

n∑︂
i=1

g1(Xi, β̂1)−
1

n

n∑︂
i=1

g0(Xi, β̂0)

The validity of the AIPW estimate depends on the correct specification of either the
propensity score or the outcome regression models, but not necessarily both, making
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the AIPW estimate doubly robust (DR). Additionally, the AIPW estimate achieves
semiparametric efficiency when both the propensity score and potential outcomes are
correctly specified.

For more detailed information on double robust methods, see Chernozhukov et al.
(2018).

2.1.2 Heterogeneity and Conditional Average Treatment Effects

Thus far, this paper has assumed that the treatment effect is uniform across all in-
dividuals in the sample, which explains the constant ATE in the previous equations.
However, assuming that everyone benefits equally from the intervention is often unreal-
istic. Therefore, I now introduce heterogeneous treatment effects (HTE) and conditional
average treatment effects (CATE) because the core focus of this thesis is identifying
HTE using machine learning methods. CATE explicitly represents the difference in the
expected outcome between two groups of individuals who share similar observed char-
acteristics or covariates, and differ only in their treatment status. The "conditional"
aspect of CATE refers to the fact that the treatment effect can vary across different
subgroups within the population, depending on their covariate values.

To illustrate the concept of HTE, Figure 1 presents an example of a homogeneous
treatment effect (Figure 1a) and an HTE (Figure 1b) within the sample. In the homo-
geneous case, while individual outcomes vary within each treatment group and between
all treatment groups, the treatment effect τ(x) remains consistent for all individuals
and matches the average treatment effect (Figure 1a). In contrast, HTE (Figure 1b)
demonstrates substantial variation in how individuals respond to treatment, with some
showing greater impact, others showing less impact, and some showing no impact at
all. Therefore, the ATE offers limited insight at the individual level, and HTE analysis
is necessary to understand how treatment effects differ across the entire sample.

To express CATE mathematically using the same notations as before, say that the
data consists of observations (Yi, Ti, X1i, ..., XJi), i = 1, ..., n with n being the number
of observations and J being the number of covariates observed. As before, Ti is the
individual treatment status, and X1i, ..., XJi denotes the J covariates for individual i.

The CATE, which represents the heterogeneous treatment effect, is defined as:

CATE : τ(x) = E[Y 1
i − Y 0

i |X = x] (8)

To effectively recover treatment effects τ(x) in the presence of heterogeneity, it is
crucial to specify a comprehensive model to capture all potential subgroups where the
effect remains constant. Capturing this information becomes particularly challenging
with linear models. However, if the outcome equation is assumed to be linear, it is
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Figure 1: Source: Gong et al. (2021)
(a) Homogeneous treatment effect (no heterogeneity): While the treatment
outcomes vary across individuals and between the treatment groups, the treat-
ment effect (represented by the difference in outcomes between the two curves,
shown by the dotted lines) remains identical for all individuals. (b) Heteroge-
neous treatment effect (HTE): The treatment effect differs among individuals,
with some gaining more, others less, and some potentially receiving no benefit
from the treatment at all.

essential to include all possible interactions among variables to minimize bias in the
CATE. The main task is to identify subgroups where the treatment effect is relatively
stable across all units, ensuring that the variation in covariates Xi is sufficient to define
these subgroups.

Variance plays a key role because it naturally reflects heterogeneity, as indicated by
the equation Var(τi) = Var(τ(Xi)) + Var(εi). Assuming zero covariance between the
terms on the right side due to unconfoundedness, an optimal approximation of τ can
be achieved by maximizing Var(τ(Xi)).

If a model lacks all possible interactions, it fails to identify these subgroups, resulting
in a biased estimation of τ(x). Even when all relevant covariates Xi are available to
ensure unconfoundedness, the bias persists unless the variance of the error term εi is
minimized. This essentially requires full specification of the functional form of τ(x) to
maximize the explained variance.

This insight is fundamental for incorporating machine learning algorithms into the
estimation of heterogeneous treatment effects. This concept is revisited in the section
3 of this thesis.

2.2 Background to Optimal Treatment Assignment

2.2.1 The Optimal Treatment Assignment Problem

In this section, I formalize the problem of optimal treatment assignment. The treatment-
assignment problem arises in scenarios in which a policymaker aims to maximize the
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overall causal impact of interventions (treatment) on a specific outcome. Each alterna-
tive represents a distinct treatment, with the objective being to assign individuals to
the treatment that maximizes their outcome. Hence, a crucial goal of empirical research
on treatment effects is to equip policymakers with information that helps them to select
appropriate treatments. On the other hand, automated decision-making systems fre-
quently aim not only to predict outcomes but to actively improve them. For instance, in
educational settings, a system may allocate personalized learning resources to students
to boost their performance rather than simply predicting their academic success. This
task broadly represents a treatment-assignment problem (Manski 2004), where each po-
tential action aligns with a specific "treatment" (e.g., "assign extra practice" versus "no
additional practice"). Ideally, each student receives the treatment associated with the
most advantageous result (e.g., the one that leads to the most significant improvement
in performance).

In this paper, I focus on scenarios in which decisions are independent, and the
treatment-assignment policy is derived from historical (observational) data based on
prior random decisions. This setup ensures that each decision impacts only one unit
(or instance) and that the data remains free from selection bias. Moreover, the stable
unit treatment value (SUTVA) and the unconfoundedness assumptions hold when a
carefully designed randomized A/B test is used to gather data.

T represents the treatment-assignment variable and Y denotes the observed out-
come. Within the potential outcomes framework (Rubin 1974), Y (j) is defined as the
outcome observed if treatment j (among k possible treatment options) is assigned,
meaning Y = Y (j) when T = j. Thus, the treatment assignment that would yield the
highest average outcome is:

a∗ = argmax
j

E[Y (j)] (9)

which can be be estimated by calculating the sample mean for each treatment:

â = argmax
j

Ê[Y |T = j] (10)

Equation 10 outlines a typical A/B testing method for comparing multiple treat-
ments within a specified population. However, this method does not account for treat-
ment assignments tailored to individuals.

Because individuals with different characteristics often differ in their responses to
treatment (heterogeneous treatment effects), statistical modelling enables us to esti-
mate the treatment-assignment policies from observational data. These tools can guide
policymakers in matching individuals to the most suitable treatment based on their

18



personal characteristics (such as preferences and behaviours). Therefore, treatment
assignment policies that distribute treatments according to individuals’ observed char-
acteristics can substantially impact outcomes.

In this paper, I determine the optimal treatments for individuals or for specific sub-
populations based on heterogeneity on individual characteristics. Assuming individuals
differ based on a set of variables (features) X, we can interpret a feature vector x as
representing a subpopulation where X = x and define the optimal assignment for a
given x as:

a∗(x) = argmax
j

E[Y (j)|X = x] (11)

Without the argmax, the right side of equation 11 effectively represents the setup of
a predictive model. Hence, statistical modeling allows flexibility here by not requiring
predefined subpopulations of interest. In Section 2.2.2, I introduce meta-learners, meth-
ods capable of estimating a∗ from data, with each generating a treatment-assignment
policy â(x).

One can evaluate treatment assignment policies by assessing how well they minimize
the expected difference between the outcomes under optimal assignments, Y (a∗(X)),
and the outcomes when using policy-driven assignment, Y (â(X)). In decision theory,
this measure is commonly referred to as (expected) regret :

regret(â) = E[Y (a∗(X))− Y (â(X))] (12)

Minimizing the regret is equivalent to maximizing the expected outcome of imple-
menting the policy.

Evaluating treatment-assignment policies using observational data, as is done when
training typical machine-learning models, presents challenges because we observe only
one potential outcome per individual, the one for the assigned treatment. Consequently,
if a policy recommends a treatment that differs from the one assigned in the historical
data, we lack the corresponding potential outcome. Nevertheless, with a dataset of n
individuals from a randomized A/B test, it is possible derive an unbiased estimate of
Equation 12 (Li et al. 2010):

1

n

n∑︂
i=1

1(â(xi) = ti)
yi

P (T = Ti)
(13)

In this expression, for each individual i, Xi represents the feature vector, ti the
treatment assigned in the data, yi the observed outcome, and P (T = ti) the probability
of assignment to treatment ti in the data which is a known value when the data is
gathered from a randomized A/B test.
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Inspired by Manski (2004), there is a vast amount of literature on developing treat-
ment assignment rules in econometrics (e.g., Hirano and Porter 2009; Tetenov 2012;
Kitagawa and Tetenov 2018; Manski and Tetenov 2019; Athey and Wager 2020). Man-
ski (2004) addresses the treatment choice problem for discrete covariates by applying
statistical decision theory, introducing a Conditional Empirical Success (CES) rule that
maximizes the sample-based welfare function. Building on Manski’s work, Hirano and
Porter (2009) propose a regression-based assignment rule, and prove its asymptotic op-
timality through the framework of a limit normal experiment. Under constraints on
feasible assignment policies, Kitagawa and Tetenov (2018) introduce Empirical Wel-
fare Maximization (EWM), a generalization of the CES approach. This method first
estimates the average outcome function from the data, then chooses a policy as a max-
imizer within the restricted set of policies as the treatment assignment rule. In this
method, Kitagawa and Tetenov (2018) concentrate on a rule that maximizes the in-
verse propensity score weighted (IPW) estimate of the average outcome function. In
contrast, Athey and Wager (2020) introduce a rule that maximizes the doubly robust
(DR) estimate.

On the other hand, statistical inference on treatment assignment policies has re-
ceived less focus than estimation, though some notable studies to address it. Armstrong
and Shen (2015) examine inference to identify individuals who should receive treatment
under the optimal assignment policy. Using a multiple hypothesis testing approach,
they define a random set of characteristics for which the data strongly indicate a posi-
tive conditional average treatment effect. Conversely, Luedtke and Van Der Laan (2016)
and Andrews et al. (2024) investigate inference for the average outcome, proposing a
general conditional inference framework for parameters chosen as data-based maximiz-
ers of a specific criterion. They apply this framework to the EWM problem, enabling
valid inference of the average outcome that would result if the EWM-selected policy
were implemented. Additionally, Andrews et al. (2024) offer a conditional inference
method that conditions on the estimated optimal rule.

In contrast with the methods above in this paper I follow a different approach. I at-
tempt to achieve optimal treatment assignment by estimating heterogeneous treatment
effects (HTE). To estimate the HTE, I follow the approach described by Hitsch et al.
(2024). This approach focuses on cases in which the predicted optimal treatment coin-
cidentally aligns with the actual, randomly assigned treatment (matched observations).
If the average outcomes of these matched observations significantly exceed the mean
outcome for the treated group, this suggests that the models are effectively assigning
optimal treatments. I explain the strategy further in Section 5.3.

Hitsch et al. (2024) discusses Simester et al. (2020) as one of their primary influ-
ences for the recent interest in heterogeneous treatment effects, focusing on evaluating
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marketing policies. Conventionally, one would compare two or more proposed targeting
policies with randomization by policy at the cost of not being able to use the data for
comparison with other policies afterwards. Interest in randomization by action makes
alternative policy evaluation possible and paves the way for treatment effect estimation.

2.2.2 Meta-Learner Algorithms

As described in Section 2.1.1, the causal inference literature typically emphasizes es-
timating aggregate causal effects such as ATE, which reflects the average impact of a
treatment across a well-defined population. However, the ATE does not assist in assign-
ing different treatments to individuals, as it offers no differentiation among individuals
in the population. In Section 2.1.2, I show that this work is fundamentally motivated
by the concept of heterogeneous treatment effects (HTEs), which capture the extent to
which a treatment’s impact varies among individuals.

To account for HTE, one can estimate conditional average treatment effects (CATEs),
which represent the average causal effect given a set of observed features. Consequently,
as individuals in the population differ by their features (assuming these features cor-
relate with causal effects), we can estimate distinct causal effects for each individual.
While treatment effects may still vary among individuals with the same features (due
to unobserved factors influencing the causal effect), estimating HTEs through CATEs
enables tailored interventions for individuals without requiring predefined subpopula-
tions. In this framework, we want to estimate τ(x) = E[Y 1

i − Y 0
i |X = x] = E[τi|X],

or, E[δYi(t)|X] in the continuous case. In other words, we aim to understand how sen-
sitive units are to the treatment. To enable identification of τ(x), we have to assume
unconfoundedness, meaning that treatment assignment is effectively randomized once
we control for the features (Rosenbaum and Rubin 1983).

The concepts underlying CATE estimation have been crucial in advancing methods
to learn optimal treatment assignment policies from observational data. Therefore, I
formally introduce meta-learner algorithms. A meta-learner provides a framework for
estimating the CATE by employing various machine learning estimators, known as base
learners (i.e., regression estimators). A meta-learner can employ a single base learner
that includes the treatment indicator as a feature (as in the S-learner) or use separate
base learners for the treatment and control groups (as in the T-learner, X-learner, and
R-learner).

In this paper, I review the two main and most popular classes of meta-learners:
X- and R-learners. Several additional meta-learners exist in the literature; however,
they fall outside the scope of this paper. This categorization is important because
it highlights that outcome prediction, causal effect estimation, and treatment assign-
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ment represent distinct tasks that carry significant implications for the application of
predictive models in policy-making.

X-Learner

Künzel et al. (2019) introduce the X-learner, a meta-learner that demonstrates high
efficiency in estimating CATE when the number of units in one treatment group is
significantly larger than that in the other. This learner also leverages structural prop-
erties of the CATE function. For instance, if the CATE function is linear and the
response functions in both treatment and control groups are (Lipschitz) continuous,
the X-learner can still reach the parametric rate under certain regularity conditions. In
addition, the authors introduce various X-learner variants that employ random forests
(RF) and BART model as base learners.

The core concept of the X-learner unfolds in three stages. First, it estimates the
response functions:

µ0 = E[Y (0)|X = x]

µ1 = E[Y (1)|X = x]

using any supervised learning or regression algorithm, with the resulting estimates
denoted as µ̂0 and µ̂1. These algorithms are called the base learners for the first stage.

Second, the method imputes the treatment effects for individuals in the treated
group using the control-outcome estimator, and for individuals in the control group
using the treatment-outcome estimator. That is expressed as:

D̃
1

i := Y 1
i − µ̂0(X

1
i )

D̃
0

i := µ̂1(X
0
i )− Y 0

i

The authors call these values the imputed treatment effects. In this case, if µ̂0 = µ0

and µ̂1 = µ1, then τ(x) = E[D̃1|X = x] = E[D̃0|X = x]. To estimate τ(x) can be used
any supervised learning or regression, in two ways: by applying the imputed treatment
effects as the response variable in the treatment group to obtain τ̂ 1(x), and similarly in
the control group to obtain τ̂ 0(x). These algorithms are referred to as the second stage
base learners.

The third stage includes defining the CATE estimate, a weighted average of two
estimates obtained in stage two:
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τ̂(x) = g(x)τ̂ 0(x) + (1− g(x))τ̂ 1(x) (14)

where g is a weight function, g ∈ [0, 1]

Künzel et al. (2019) remark that both τ̂ 0 and τ̂ 1 serve as estimators for τ , with g

selected to combine them into a refined estimator, τ̂ . Based on their experience, using
an estimate of the propensity score for g, such as g = ê, often works well. However, it
may also be appropriate to set g = 1 or g = 0 if the treated unit count is substantially
larger or smaller than that of the control units. For certain estimators, estimating the
covariance matrix of τ̂ 1 and τ̂ 0 may be possible, and allow g to be selected to minimize
the variance of τ̂ .

Although the X-learner performs effectively with randomized treatments, it struggles
to construct counterfactuals from Xi in observational studies (Künzel et al. 2019).
Causal forests address this limitation by using g(X) as the propensity score, enabling
CATE estimation through a doubly robust (DR) approach. Due to these limitations,
in the application section of this paper, I focus on using the R-learner instead.

R-Learner

Nie and Wager (2021) propose the R-learner, a new approach to estimating heteroge-
neous treatment effects that offers a comprehensive answer to how machine learning
methods should be adapted for treatment effect estimation in observational studies.
First, the authors express treatment propensity as (similar as in the Equation 4):

e∗(x) = P (T = 1|X = x) (15)

where ’∗’ superscript denotes unknown population quantities. Here, I use the same
notation as in the previous sections of this paper. Then, assuming unconfoundedness:

E{εi(Ti)|Xi, Ti} = 0 (16)

εi(T ) := Yi(t)− {µ∗
(0)(Xi) + tτ ∗(Xi)} (17)

To express the CATE function τ ∗(x) in terms of the conditional mean outcome,
m∗(x), first I express m∗(x) as:

m∗(x) = E[Y |X = x] = τ ∗(0)(Xi) + e∗(Xi)τ
∗(Xi) (18)

Then, using Robinson (1988) expressions, the CATE function can be written as:
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Yi −m∗(Xi) = {Ti − e∗(Xi)}τ ∗(Xi) + εi (19)

, where εi = εi(Ti).
Robinson (1988) first applied this decomposition to estimate parametric components

within partially linear models. Athey et al. (2019) later leveraged it to develop a
causal forest that addresses confounding, while Chernozhukov et al. (2018) used it
as a prime example of how machine learning methods effectively estimate nuisance
components in semiparametric inference. However, these results primarily focus on
estimating parametric models for τ(·) or, in the case of Athey et al. (2019), on local
parametric modelling.

Nie and Wager (2021) demonstrate how the Robinson transformation (Equation
19) enables flexible treatment effect estimation using modern machine learning tech-
niques, including boosting (e.g., xgboost, random forests, and causal forests) and deep
learning (e.g., feed-forward neural networks). They show that this approach allows
construction of a loss function that captures heterogeneous treatment effects, and that
treatment effects can then be estimated accurately, both in empirical performance and
with asymptotic guarantees, by identifying regularized minimizers of this loss function.

Equation 19 can be rewritten as (Robins 2004):

τ ∗(·) = argmin
τ

{E([{Yi −m ∗ (Xi)} − {Ti − e∗(Xi)}]2)} (20)

In this case, an oracle with prior knowledge about both functions m(x) and e(x)

could estimate HTE function τ(x) through loss function minimization τ̃(·) (Nie and
Wager 2021):

τ̃(·) =

(︄
1

n

n∑︂
i=1

[{Yi −m ∗ (Xi)} − {Ti − e∗(Xi)}τ(Xi)]
2 + Λn{τ(·)}

)︄
(21)

where Λ{τ(·)} acts as a regularizer on the complexity of the τ(x) function. This
regularization might be explicit, as seen in penalized regression, or implicit, as in a well-
constructed deep neural network. However, in practice, we rarely know the weighted
main effect function m(x) and often lack knowledge of treatment propensities e(x),
making the estimator in Equation 21 infeasible (Nie and Wager 2021).

Based on these preliminaries, Nie and Wager (2021) develop a class of two-step
estimators using cross-validation (or cross-fitting). In the first step, they fit m̂(x)

and ê(x) with machine learning methods using cross-validation by dividing up the data
into Q equal sized folds. Then, in the second step, they estimate treatment effects by
minimizing the R-loss function, L̂n(τ(x)):
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L̂n(τ(x)) =
1

n

n∑︂
i=1

{︂(︂
Yi − m̂(−i)(Xi)

)︂
−
(︂
Ti − ê(−i)(Xi)

)︂
τ(Xi)

}︂2

(22)

where ê(−i)(Xi) and m̂(−i) denote the out-of-the fold held-out predictions obtained
without using i-th training sample. This approach is the R-learner. In essence, the
first step of the approach approximates the oracle objective, while the second step
focuses on optimizing it.

I chose to implement R-learner for the application part of this paper for two main
reasons. First, this method eliminates correlations through the structure of the loss
function L. Second, it allows the representation of τ(x) to be shaped by the selected
optimization method for loss-function (Equation 22). Because optimizing Equation
22 is an empirical minimization problem, I tackle it by using the tree-based method
of Causal Forests (CF) and the feed-forward deep learning method of Causal Neural
Networks (CNN). Additionally, through the R-learner technique I can fine-tune these
two methods by cross-validating on the loss function L, eliminating the need for more
complex model-assisted cross-fitting techniques.

Comparing the meta-learners to highlight a few key points. First, none of the meta-
learners is the single best technique, and each has weaknesses. The application of each
method is highly dependent on the context of the problem at hand. Second, the choice
of base learner can significantly impact the prediction accuracy of the meta-learner.
Meta-learners utilize various predictive ML models, including linear regression, boosted
decision trees, neural networks, and Gaussian processes. Therefore, the effectiveness of
a meta-learner often depends significantly on the choice of machine learning methods
it incorporates. Usually, finding the best-performing model requires experimenting
with multiple options to determine what works optimally. This flexibility is a valuable
advantage for meta-learners, allowing practitioners to leverage domain knowledge when
selecting high-performing base learners.

A crucial final point to consider is that optimizing models for causal effects pre-
diction differs from optimizing models for predicting optimal treatment assignments
(Fernández-Loría et al. 2023). Figure 2 depicts the contrast of outcome predictions
from two models for a single individual. One model produces high prediction errors
(Figure 2 (a)), while the other yields low errors (Figure 2 (b)). In both figures, tri-
angles represent true conditional expectations, and dots indicate model predictions.
A greater distance between triangles and dots (shown by dashed lines) signals poorer
outcome predictions.

In this scenario, the conditional expectation when T = 1, is higher than T = 2,
indicated by triangles, suggesting that T = 1 is the better treatment strategy. Thus,
models achieve the optimal assignment when µ̂(x, 1) > µ̂(x, 2). Figure 2 (a) shows
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that, despite its larger prediction errors, the first model correctly makes the optimal
treatment assignment because the rank ordering predicted outcomes aligns with the
true values ranking. Conversely, the second model in Figure 2 (b) results in a poorer
assignment, despite smaller prediction errors, as the ordering is reversed. Notably, this
misalignment can also arise when fitting models for causal effect prediction. Therefore,
because higher accuracy causal effect prediction may actually worsen treatment assign-
ments, training models focused on predicting optimal assignments should yield better
treatment assignments than the other meta-learners.

Figure 2: Source: Fernández-Loría et al. (2023)
Comparing causal effects and treatment assignment prediction for an individ-
ual. The model shown on the left has greater outcome prediction errors com-
pared to the model on right, as indicated by the larger dashed lines on the
left than on the right. Nonetheless, the model on the left achieves a better
treatment assignment than the model on the right because the dots maintain
the ranking order of the triangles.
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Machine Learning for Causal Inference

In this section, I will outline the methodology behind heterogeneity and conditional
average treatment effect (CATE) estimation using machine learning methods. Hitsch
et al. (2024) categorize the estimation methods into two groups, distinguishing them by
their conceptual estimation approaches. The first group comprises indirect estimation
methods that aim to minimize the squared-error loss between observed and predicted
outcome levels, E[(Yi−µ̂(Xi, Ti))

2]. The best predictor in this approach is the regression
function, µ(x, t) = E[Y |X = x, T = t].

Given unconfoundedness, we have:

µ(x, t) = E[Y (t)|X = x, T = t] (23)

Therefore, once we have estimated the regression function, we can indirectly predict
the CATE, as do (Hitsch et al. 2024):

τ̂(x) = τ̂(x, 1)− τ̂(x, 0) (24)

However, indirect estimation may be inefficient, because our primary objective is to
predict CATEs rather than outcome levels. Thus, we should ideally use direct estimation
methods that focus on minimizing loss E[(τ(Xi) − τ̂(Xi))

2]. Hitsch et al. (2024) state
that this loss function is infeasible due to the fundamental problem of causal inference,
making direct estimation of treatment effects appear impossible. Nevertheless, there
exist recent methods that attempt to directly estimate the CATE, such as the causal
forest approach by Wager and Athey (2018).

In this paper, I use the semiparametric indirect estimation method of causal neural
networks (CNN) (Farrell et al. 2021), and the parametric direct estimation method of
causal forests (CF) (Wager and Athey 2018). In the next section, I introduce first
ensemble methods such as boosting, focusing on the CF technique. Then, I explain the
deep-forward neural network technique of CNN.

3.1 Introduction to Tree-Based Methods

Wager and Athey (2018) extend random forest framework of Breiman (2001) to estimate
treatment effects directly, eliminating the need to construct counterfactual outcomes
beforehand. In traditional random forests, the algorithm repeatedly splits the data to
minimize the prediction error of the outcome variable. Causal forests operate similarly
but differ in their splitting criterion: instead of minimizing prediction error, they parti-
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tion the data to maximize differences between the outcome variable and the treatment
variable across the splits.

3.1.1 Causal Trees

A causal forest, much like a random forest, is composed of multiple decision trees, in this
case, causal trees. Introduced by Athey and Imbens (2016), causal trees are adaptations
of regression trees designed for causal inference. Regression trees are decision trees
used to predict a continuous outcome variable Yi by creating a piecewise constant
approximation of the data. They recursively partition the data by making binary splits
based on one variable Xj at a time, resulting in rectangular regions Rt for t = 1, . . . , T ,
where T is the total number of regions. Figure 3 illustrates an example of such a
regression tree and its corresponding regions.

Figure 3: Source: (James et al. 2013, p. 335)
Top Left: A partition of the two-dimensional feature space (i.e., using two
covariates) that cannot be generated by recursive binary splitting. Top Right:
The result of applying recursive binary splitting to a two-dimensional exam-
ple. Bottom Left: A decision tree representing the partition displayed in the
top right panel. Bottom Right: A perspective plot of the prediction surface
associated with that decision tree.
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In causal trees, the primary objective is similar to that of regression trees: minimize
the prediction error, specifically

∑︁N
i=1(τi − τ(x))2, where τi is the true treatment effect

and τ(x) is the estimated treatment effect based on features Xi. However, because the
true treatment effects τi are unobserved, constructing the tree structure and deciding
where to split the nodes is not straightforward. To address this challenge, two main ap-
proaches are employed: outcome transformation and objective function transformation.
The former transforms the outcome variable Yi and then applies standard regression
tree methods directly. The latter modifies the objective function used for splitting the
tree, leading to what is called transformed objective trees.

A significant contribution of Athey and Imbens (2016) is the development of methods
to construct confidence intervals and conduct hypothesis tests within this framework.
They introduced the concept of honesty, which ensures consistency and asymptotic
normality of the treatment effect estimates without requiring additional assumptions.
The idea behind honesty is to split the training data into two separate subsets: Str

used solely to determine the tree structure by splitting the data into nodes; Sest used
solely to estimate the treatment effects within each node. The test data is denoted by
Ste. By separating the data used for splitting from the data used for estimation, the
asymptotic properties of the treatment effect estimates within each leaf are preserved,
as if the leaves were endogenously given rather than influenced by the data.

Because the true individual treatment effects τi are unobservable, we cannot directly
compute an error function like the mean squared error. To overcome this, transformed
objective trees use alternative objectives that focus on maximizing the heterogeneity of
treatment effects between different leaves. These objectives may also favor splits that
reduce variance within leaves, thereby improving the reliability of the estimates.

Athey and Imbens (2016) derive a primary splitting criterion based on maximizing
the negative expected value of a modified mean squared error (EMSE) for a given tree
partition Π 4:

− ˆ︂EMSEτ (S
tr, N est,Π) =

1

N tr

∑︂
i∈Str

τ̂ 2(Xi;S
tr,Π)

− (
1

N tr
+

1

N est
) ·
∑︂
Rt∈Π

(︄
S2
Str
treat

(Rt)

p
+

S2
Str
control

(Rt)

1− p

)︄
(25)

In this equation, τ̂ 2(Xi;S
tr,Π) is the estimated treatment effect for Xi in the tree

building sample Str, given the candidate tree structure Π. N tr and N est are the numbers
of observations in the tree-building Str and treatment effect estimating Sest samples,

4Π stands for the full tree structure, including all splits.
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respectively. S2
Str
treat

and S2
Str
control

are the within-leaf variances for treated and control ob-
servations in leaf Rt, calculated from tree building sample Str only. Lastly, p represents
the proportion of treated observations in the entire training sample.

The first term in this criterion rewards splits that increase the heterogeneity of
treatment effects across different leaves, basically increasing the differences in estimated
effects between nodes. The second term penalizes splits that result in high variance
within leaves, encouraging more precise estimates within each node. By balancing
these two aspects, maximizing between-leaf heterogeneity and minimizing within-leaf
variance, the splitting criterion aims to create a tree structure that captures variations
in treatment effects while maintaining reliable estimates within each group.

In their later work on generalized random forests, Athey et al. (2019) propose addi-
tional splitting criteria to further improve the method’s flexibility to a wider range of
problems.

3.1.2 From Causal Trees to Forests

The process of extending causal trees to causal forests mirrors that of regression trees to
random forests. To build a causal forest, a predetermined number of bootstrap samples
are drawn with replacement from the training dataset. Then, an individual causal tree
is trained on each of these bootstrap samples.

To reduce the correlation among the trees and improve the model’s performance,
each tree considers only a random subset of covariates (features) at each split decision.
This subset is smaller than or equal to the total number of covariates. This random
selection of features at each split helps to create diverse trees that, when combined,
improve overall prediction accuracy.

The final prediction of the causal forest is obtained by averaging the predicted treat-
ment effects from all the individual causal trees. This ensemble prediction is calculated
using the formula:

τ̂ forest(X) =
1

B

B∑︂
b=1

τ̂ b(X) (26)

,where τ̂ b(X) is the predicted treatment effect from the b-th causal tree trained on
the b-th bootstrap sample. By averaging the predictions from multiple diverse trees,
the causal forest provides a more accurate estimate of the treatment effect compared
to a single causal tree.

3.2 Background of the Deep Learning Model

Farrell et al. (2021) introduce a semiparametric deep learning method called causal
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neural networks (CNN) for estimating heterogeneous treatment effects (HTE). This
method uses a feed-forward neural network to jointly estimate both the treatment
effect and the impact of covariates i.e., approximating the functions α(x) and β(x):

E[Yi|Xi = x, Ti = t] = α(x) + β(x)× t

Historically, neural networks have been less commonly employed in economic re-
search than other machine learning techniques. In the following sections, I will intro-
duce the fundamentals of feed-forward neural networks and describe how the network
architecture is adjusted to construct a causal model for predicting HTE.

3.2.1 Basics of Feed-Forward Neural Networks

A feed-forward neural network is a type of non-linear model used to approximate a
target function f(x). The term feed forward indicates that the connections between
the nodes form a directed acyclic graph, where information moves in one direction from
the input layer, through any hidden layers, to the output layer, without forming any
loops. The input layer consists of J nodes, where J is the number of input variables
or covariates. Each hidden layer contains a predetermined number of nodes, known as
the width of that layer.

The computation within the network proceeds as follows: First, for a node u in
hidden layer l, the input z

(l)
u is calculated by summing the weighted outputs of all

nodes in the previous layer:

z(l)u ≡
(l−1)∑︂
b=1

β
(l−1)
bu ab (27)

,where β
(l−1)
bu is the weight connecting node b in layer (l − 1) to node u in layer l.

Moreover, a(l−1)
b is the output of node b in the previous layer (l − 1). Then, ReLU 5

activation function is applied to the input z(l)u to introduce non-linearity for the output
node a

(l)
u :

a(l)u = max(z(l)u , 0)

In other words, the output a
(l)
u is zero if z(l)u < 0, and equal to z

(l)
u if z(l)u > 0.

Moreover, no activation function is applied to the input and output layers so:
5The rectified linear unit (ReLU) activation function introduces the property of nonlinearity to a

deep learning model and solves the vanishing gradients issue.
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a
(l=1)
b = xb

a(l=L) = ŷ

Furthermore, neural networks can produce prediction of multiple outcomes simul-
taneously, so al=L

b = Ŷ b, however, in this paper I focus on predicting only one outcome
variable at the time.

Farrell et al. (2021) emphasize the use of only ReLU activation function x ↦→
max(x, 0) in their approach. They argue that the shift from traditional smooth, sigmoid
type activation functions to the ReLU function is a key reason, alongside advancements
in computational power and optimization techniques, for the recent surge in the perfor-
mance of neural networks. The ReLU function addresses issues like vanishing gradients
and has been shown to outperform earlier activation functions like sigmoid or tanh.

Furthermore, the network’s weights β
(l)
bu are optimized using the back-propagation

technique, which iteratively updates the weights to minimize prediction error. The
main idea is that, for each prediction, the algorithm computes the error based on a
chosen loss function (e.g., mean squared error (MSE)). Then, it calculates how much
each weight contributes to this error by computing the gradient of the loss function
with respect to each weight. Finally, the weights are adjusted in the opposite direction
of the gradient (gradient descent), and both their magnitude and sign are modified to
reduce the overall error. By repeatedly performing these steps over multiple iterations
(epochs), the network learns the optimal weights that best approximate the target
function f(x), leading to improved predictive performance.

3.2.2 Architecture of Causal Deep Neural Network

The causal neural network (CNN) introduced by Farrell et al. (2021) is a feed-forward
neural network that employs ReLU activation functions and incorporates, an input
layer, two custom layers appended to the hidden layers, a parameter layer and an
output layer. A visual representation of this network architecture with two hidden
layers is illustrated in Figure 4.

In this CNN architecture, the second-to-last layer, referred to as the parameter
layer (L4 in Figure 4), consists of three nodes. Two of these nodes are standard nodes
that receive their inputs from the last hidden layer through feed-forwarding, with no
activation function applied. The third node is the treatment indicator Ti, which is not
connected to the previous hidden layers and effectively acts as an additional input node.

The final output layer is designed to predict the outcome variable Yi. This prediction
is computed by summing the outputs of the two standard nodes from the parameter
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layer, with one of these node outputs being multiplied by the binary treatment indicator
Ti. Specifically, the node that interacts with Ti estimates the heterogeneous treatment
effect τ̂(X), while the node that does not interact with Ti estimates the outcome under
no treatment Ŷ

0
.

The network is trained to minimize the mean squared error (MSE) between the
predicted outcomes and the actual outcomes. This involves jointly estimating Y 0(X)

and τ(X) (and consequently Y 1(X)) by solving the following optimization problem:(︄
Ŷ

0
(X)

τ̂(X) = Ŷ
1
(X)− Ŷ

0
(X)

)︄
:= argmax

Ỹ
0
,τ̂

1

n

n∑︂
i=1

(yi − Ỹ
0
(Xi)− τ̃(Xi)Ti)

2 (28)

Here, yi represents the observed outcome for individual i, and n is the total number
of observations. Note that MSE serves as the loss function that quantifies the average
squared difference between the predicted values and the actual outcomes, therefore
measuring the magnitude of the prediction error.

To generate predictions for the CATE or HTE, the model feed-forwards the covari-
ates through the network and extracts the value of τ̂(X) from the parameter layer, the
node that interacts with treatment indicator Ti. According to Farrell et al. (2021), this
approach of jointly estimating Y 0(X) and τ(X) within the same neural network out-
performs methods that separately estimate Y 0(X) and Y 1(X) using neural networks
trained on different subsets of the data.

x1

x2

x3

x4

...

xn

Ŷ (x)

τ̂(x)

T

Ŷ = Ŷ 0 + T × τ̂(x)

Inputs
layer L1

Hidden
layer L2

Hidden
layer L3

Parameter
layer L4

Model
layer L5

Figure 4: Source: Farrell et al. (2021). This figure shows the feed-forward
neural network architecture with two hidden layers. I employ the same struc-
ture when constructing the causal neural network (CNN) in the application
section of this paper.
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Empirical Application

4.1 Background

In recent years, estimation of heterogeneous causal effects has garnered significant at-
tention across various research disciplines. Machine learning (ML) methods have been
adapted to flexibly estimate heterogeneity (HTE) along potentially large numbers of co-
variates, leading to the development of estimators utilizing random forests (Wager and
Athey 2018; Athey et al. 2019), LASSO (Tian et al. 2014; Chen et al. 2017), deep neu-
ral networks (Johansson et al. 2016; Schwab et al. 2018), and Bayesian ML approaches
(Taddy et al. 2016).

Despite advancements in estimating average causal effects, practical guidance for
practitioners on estimating HTEs remains limited, particularly in the context of op-
timal treatment assignment. The economic literature on causal inference for optimal
treatment assignment has gained popularity recently, especially in the medical sector,
where there is growing interest in patient-centered outcomes (Willke et al. 2012). How-
ever, significant potential exists for applications in other fields, such as incentivizing
effort in employee management (DellaVigna and Pope 2018) and evaluating the effec-
tiveness of public policies in education and taxation (Johansen 2024; Xu et al. 2024).
Kleinberg et al. (2015) clarify the distinction between the need for causal inference and
prediction in policy applications. Kitagawa and Tetenov (2018) develop a frequentist
empirical welfare maximization method for optimal treatment assignment, while Man-
ski (2004) suggests that optimal treatment assignment to maximize social welfare differs
from traditional point estimation with hypothesis testing. Building on this, Hirano and
Porter (2009) develop an asymptotic normality theory for statistical treatment rules
that map empirical data into treatment choices.

Classical nonparametric approaches for estimating HTEs, such as kernel methods
and nearest-neighbor matching, provide good predictive performance with few covari-
ates, but experience a rapid decline in accuracy as the number of covariates increases
(Wager and Athey 2018). This limitation underscores the argument for employing ML
methods, which tend to perform better with many covariates, but often require a larger
number of observations to produce reliable predictions.

Given the rapidly expanding literature on ML methods for HTE estimation, an
important question arises on which methods perform well for optimal treatment assign-
ment, and how can they be compared empirically.

A central goal of this paper is to compare the performance of two machine learn-
ing models in predicting heterogeneous treatment effects for optimal treatment assign-
ment, representing the two main categories of estimation methods: direct and indirect.
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Specifically, I compare the indirect semiparametric estimation method of causal neural
networks (CNN) by Farrell et al. (2021) with the direct parametric estimation method
of tree-based causal forests (CF) from Wager and Athey (2018).

I apply these ML methods to an empirical dataset from an online experiment on the
incentivization of manual labor conducted by Opitz et al. (2024), using a comparison
method based on Hitsch et al. (2024), and the loss function R-learner developed from
Nie and Wager (2021). The data was collected from an experiment carried out on
Amazon Mechanical Turk (MTurk), a platform used primarily for small-scale contract
labor but increasingly popular for behavioral experiments.

A major challenge in optimal treatment assignment using HTEs is the winner’s
curse, in which overestimated treatments are more likely to be identified as optimal
because the selection is based on the highest predicted treatment effect. To address this
issue, I present shrinkage estimators as a possible solution, and evaluate the effectiveness
of these shrinkage techniques when applied to the predictions of the ML methods on
the empirical dataset.

This study is closely related to the work of Opitz et al. (2024) and Hitsch et al.
(2024). Opitz et al. (2024) examines the performance of targeted assignment of incen-
tive schemes by conducting two large-scale experiments, each involving an extensive
personality trait survey followed by a manual labor task. The first experiment was
used for pre-analysis, model selection, and training of the model, while the second
compared the performance of treatment assignment using the Virtual Twin Random
Forest method. Opitz et al. (2024) found that personality traits could predict partici-
pants’ performance, enabling employers to exploit worker heterogeneity to enhance the
performance effect of incentives through targeted assignment.

However, this study differs from Opitz et al. (2024) and the rest of the related
literature in two major aspects. First, I aim to empirically compare two ML methods
for optimal treatment assignment, and to offer a rigorous guideline on how to compare
and select methods for optimal treatment assignment. Second, I analyze the critical
issue of the winner’s curse in optimal targeting, which was not highlighted in Opitz et al.
(2024), and not widely developed in the literature of the optimal targeting. I introduce
two shrinkage estimators as a solution, offering a novel setting for the application of
such techniques for improved optimal treatment assignment.

Although I employ a methodology similar to that used by Hitsch et al. (2024) to
compare ML methods, this study differs in key respects. Hitsch et al. (2024) focuses
on customer targeting in marketing contexts, such as companies using catalogs, emails,
and display ads, while this empirical application centers on incentive schemes in the
context of workers. Additionally, Hitsch et al. (2024) emphasizes two main techniques,
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that of treatment effect projection (TEP) and causal KNN regression, whereas I focus
on CF and CNN methods.

The contributions of this paper to the literature are twofold. First, I rigorously
compare the performance of two machine learning methods in estimating heterogeneous
treatment effects for optimal policy assignment, and provide insights into their relative
effectiveness. Second, I introduce the use of shrinkage estimators in a novel setting,
in the context of estimating HTE for optimal treatment assignment, addressing the
winner’s curse problem.

4.2 Data

In this paper, I analyze data 6 from the first round of experiments conducted by Opitz
et al. (2024) on Amazon Mechanical Turk (MTurk) with a sample exclusively from the
United States, collected over approximately two and a half weeks in September 2021.
This paper focuses on using the data collected in the initial round of the experiment
to apply and compare the machine learning models for optimal treatment assignment.
The dataset consists of 6,065 observations (individuals) and 55 features, where each
individual is assigned to one of the six treatments or control group.

Before participating in the main task of the experiment, participants completed an
extensive survey covering their demographics, personality traits, and social preferences.
In addition to standard questions about age, gender, and education level, the survey
included assessments of the Big Five personality traits (John 1991), as well as measures
of risk preferences, loss aversion, competitiveness, social comparison, altruism, and
positive reciprocity.

For the working task, participants could earn points by alternately pressing ’a’ and
’b’ buttons over a ten-minute period. The participants are asked to try to score as many
points as possible. Then, the points participants score in this test serve as a proxy for
ability in such tasks. During this task, they could see a timer, their current point total,
and their current bonus. Note that the essential aspect of an experiment is to achieve
randomization by employing a randomization strategy. Each participant was randomly
assigned to one of six treatments or to a control group. The assignment determined the
incentive structure, or lack thereof, for pressing the buttons and accumulating points.

These treatments were:

1. Pay for Performance (PfP) 5 cents for every 100 points.

2. Goal $1 if you score at least 2000 points.
6The data files are retrieved from the supplemental material webpage of Opitz et al. (2024):

https://doi.org/10.1287/mnsc.2022.03362
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3. Gift & Goal $1, would appreciate at least 2000 points appreciate if you try to
score at least 2,000 points.

4. Loss $1, lose it unless you score at least 2000 points.

5. Real-Time Feedback $0.02 times the percentile reached.

6. Social PfP 3 cents for participant + 2 cents for Doctors without Borders for
every 100 points.

7. Control no extra payment.

For detailed descriptions of the treatments and the text shown to the participants,
see Appendix 9.2 or Opitz et al. (2024).

In all treatment groups, participants earned significantly more points than those in
the control group (see Table 1: Wilcoxon Rank Sum test with α < 1%). The mean and
median outcomes for each group are illustrated in Figure 5.

Figure 5: These graphs depict the mean and median outcomes for the respec-
tive treatments. The enumeration of treatments is the same as the order listed
in Appendix 9.2, with treatment seven being the control group. The overall
mean of points is 1845, and the overall median is 2,012. The bars represent
the bootstrap confidence intervals at the 95% level

Importantly, the average outcomes for treatments one, two, four, and five were sig-
nificantly higher than those for treatments three and six (based on Wilcoxon Rank Sum
tests at the 5% significance level; see Table 1). This suggests that certain treatments
were more effective in motivating participants.

Figure 6 illustrates the estimated probability density functions of the points earned
in each treatment. Notably, there is a spike in density around zero points, especially in
the control group and treatment three. In these groups, the payoff did not depend on
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T1 T2 T3 T4 T5 T6 T7

T1 0.500 0.554 0 0.90 0.534 0.046 0
T2 0.445 0.500 0 0.894 0.502 0.026 0
T3 0.99 0.999 0.5 1.000 0.999 0.993 0
T4 0.098 0.105 0 0.500 0.135 0.0009 0
T5 0.465 0.497 0 0.864 0.500 0.047 0
T6 0.953 0.973 0.006 0.999 0.952 0.5 0
T7 1 1 1 1 1 1 0.5

Table 1: This table contains the p-values for the Wilcoxon Rank Sum tests for
the hypothesis H0 : P (X > Y ) = P (Y > X) vs H1 : P (X > Y ) > P (Y >
X) with X being the points of the sample where the treatment corresponds
to the treatment of the respective row value, and Y being the points of the
sample where the treatment corresponds to the treatment of the column value.
Treatment seven is the control group. p-values that are less than 0.05 are
colored in red.

the number of points scored, which explains the high frequency of zero-point outcomes
and the substantial gap between the mean and median.

To ensure data quality, the dataset was cleaned to remove participants who did not
engage correctly with the experiment. This exclusion was based on predefined criteria,
such as not pressing any buttons, spending less than a certain amount of time on the
task pages, or achieving point totals indicative of cheating.

Figure 6: This figure depicts the estimated kernel density functions for the
points for each treatment. The functions are colored according to the six
different treatments to be taken from the adjacent legend. The enumeration
of treatments is the same as the order listed in Appendix 9.2.

Figure 7 illustrates the average score accumulated for each treatment. The figure
suggests that "Loss" (or treatment 4) is the most effective treatment, followed by the
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"Real-Time Feedback", "Goal" and "Pay for Performance". In contrast, the control
group shows intuitively the lowest accumulated of scored point, which translates to
individuals having the lowest performance.

Figure 7: The figure displays the average individual performance categorized
by treatment group, with treatment details provided in Appendix 9.2. Perfor-
mance is quantified by points scored in the button pressing task. Vertical lines
indicate the 95% confidence interval.
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Methodology

5.1 Model Training and Hyperparameter Tuning

To determine the optimal hyperparameters for both the causal forest and causal neu-
ral network model, I employ a grid search algorithm combined with three-fold cross-
validation 7. Specific details about which parameters are tuned are provided in Ap-
pendix 9.4.

Furthermore, I train a separate model for each of the six treatments using each
machine learning method. These models are built on a subsample of the training data
that includes only the control observations and individuals who received the respective
treatment. The purpose of each model is to estimate the treatment effect for each
specific treatment. As a result, I perform hyperparameter tuning individually for each
of these six models within each method. Finally, the overall model assigns to each
individual the treatment that has the highest estimated treatment effect according to
these models.

5.2 Model Selection

A major challenge in tuning hyperparameters for models that predict treatment effects
is the lack of a directly observable error term. Schuler et al. (2018) provide an overview
of various metrics for assessing the performance of models that predict heterogeneous
treatment effects. Based on their findings, they recommend using the metric ˆ︂τ − riskR

for model selection in individual treatment effect prediction. This metric originates
from the R-Learner framework developed by Nie and Wager (2021), which employs
the Robinson (1988) decomposition to reformulate the conditional average treatment
effect in terms of the conditional mean outcome. For a more detailed explanation of
the R-Learner method, please refer to Section 2.2.2. I also introduce the basic concept
of the ˆ︂τ − riskR metric in Appendix 9.3.

In their simulation study, Schuler et al. (2018) tested the ˆ︂τ − riskR function and
found that, when used for model selection, this particular loss function consistently
chose models with a low mean squared error of the predicted treatment effect E[(τ̂(X)−
τ(X))2], outperforming other loss functions in terms of selecting accurate models.

The loss function used in the context of this thesis is defined as:
7K-fold cross-validation is a technique for evaluating predictive models. The dataset is divided into

k subsets or folds. The model is trained and evaluated k times, using a different fold as the validation
set each time.
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ˆ︂τ − riskR =
1

Nte

Nte∑︂
i∈Nte

((Yi − m̂(Xi))− (Ti − p̂(Xi))τ̂(Xi))
2, (29)

where m̂(Xi) is an estimation of E[Yi|Xi] and p̂(Xi) is the estimation of the treat-
ment propensity E[Ti = 1|Xi].

To estimate m̂(Xi), I use a Lasso regression, and for propensity score p̂(x), I employ
Logistic regression. Both models are cross-validated and trained on the training dataset,
allowing them to predict m̂(Xi) and p̂(x) for the individuals in the test set. In addition,
I apply the metric ˆ︂τ − riskR as the model selection criterion for both the causal forest
(CF) and causal neural networks (CNN) methods.

5.3 Comparison Strategy

For testing and comparing the performance of the two methods on an empirical dataset
with unobserved true treatment effects, I use an approach based on the method out-
lined by Hitsch et al. (2024). The main idea of this approach is to use the observations
in which coincidentally the predicted optimal treatment and the actual, randomly as-
signed, treatment are equal (matched). If the average outcomes of the matched obser-
vations are well above the mean treated outcome, this hints in the direction of models
properly assigning optimal treatments.

First, the two models are trained on a training sample and predict the treatment
effects for all respective treatments of the observations in the test sample. For each
observation and prediction method in the test sample, the optimal treatment is assigned,
according to the highest predicted treatment effect of the used treatments. For some
observations, the assigned optimal treatment will be equal to the randomly assigned
treatment. I refer to those observations as matched .

The performance of the models can then be analyzed by examining the average
outcome of the matched observations. For models that correctly assign the optimal
treatment, the average outcome of matched observations will be higher than for models
which do not. However, a high average outcome of matched observations does not
necessarily coincide with the actual best treatment being assigned. It might be, e.g.,
the second-best (with a high treatment effect). Therefore, for most application examples
using treatment assignments, correctly differentiating between effective and ineffective
individual treatments is more important than predicting which one out of two very
effective treatments is optimal.

Furthermore, if the mean outcome of matched observations is higher than the mean
outcome of all treated observations, this suggests that assignment via the respective
method is better than random assignment. If the mean outcome of matched observa-
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tions is higher than the average outcome of individuals treated with a specific treatment,
this suggests that assignment via the model is better than only assigning that specific
treatment.

To ensure that the empirical results are not driven by randomness of the choice of
the test and training samples, the described matched observation analysis (which I will
refer to as Hitsch Matching) are conducted via one-hundred times repeated three-
fold cross-validation. Then, I calculate the average outcomes of matched treatments
for each treatment and each method. In addition, I calculate the average outcomes of
matched treatments overall (over all repetitions and folds).

Following the average points of the matched observations over all repetitions and
folds, I will compare the distributions of the average outcomes of matched observations
over the repetitions and the number/share of repetitions in which the average outcome
of matched observations is higher than the average outcome of the best-performing
treatment (Treatment 4), or higher than the average outcome over all treated individ-
uals. As outlined in Section 4.2, the average points of treatments three and six are
significantly below those of the other treatments. Therefore, I expected that the mod-
els will mostly predict much lower treatment effects for those treatments, such that
they are almost never assigned as optimal. Consequently, there will be very few or no
matched observations for treatments three and six. If a method is as good as random
assignment for all treatments except three and six, and does not assign only treatments
three and six as optimal, the average points of matched observations for the respective
method will still be higher than the average points over all treatments.

To ensure that models do not perform well only because they mostly do not assign
treatments three and six, I also compare the assignments only using treatments one,
two, four, and five.

5.4 Motivation and Background to Winner’s Curse

The winner’s curse phenomenon in optimal treatment assignment, as explained by
Andrews et al. (2024), underlines a bias where treatments with overestimated effects
are more likely to be considered optimal. This phenomenon can lead to a systematic
overestimation of the treatment effect for the selected optimal treatment. Consequently,
the true optimal treatment may be overlooked because another treatment’s effect was
exaggerated. In this paper, I briefly introduce the winner’s curse through a stylized
example of average treatment effects. To solve the winner’s curse issue, I propose
shrinkage methods as a potential solution. Furthermore, in the next sections I present
empirical findings using these shrinkage techniques.
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5.4.1 A Stylized Example

Andrews et al. (2024) demonstrate the winner’s curse using a simplified example of esti-
mating average potential outcomes. Imagine there are n individuals randomly assigned
to one of two groups: a treatment group where Ti = 1 and control group where Ti = 0,
with n/2 individuals in each group. For each unit, we observe an outcome Yi (such
as the number of points scored). The average outcomes for the treatment and control
groups, denoted as Z∗

n(1) and Z∗
n(0) respectively, are calculated as:

(Z∗
n(0), Z

∗
n(1)) =

(︄
2

n

n∑︂
i=1

TiYi,
2

n

n∑︂
i=1

(1− Ti)Yi

)︄
(30)

When participants are randomly sampled from the population (ensuring uncon-
foundedness), the estimators Z∗

n(1) and Z∗
n(0) become unbiased estimates of the popu-

lation’s average potential outcomes, represented as (µ∗(0), µ∗(1)) = (E[Y 1
i ], E[Y 0

i ]).
Given that the treatment is binary in this case, the set of possible policies is denoted

by Θ = {0, 1}. The optimal policy θ̂n = argmaxθ∈Θ Z∗
n(θ) is the one that yields the

highest estimated average outcome.
Because there are only two possible policies in this example, determining the esti-

mated optimal policy θ̂n = argmaxθ∈Θ Z∗
n(θ) becomes straightforward. Specifically, θ̂

becomes 1 if Z∗
n(1) > Z∗

n(0), and equals 0 if Z∗
n(1) < Z∗

n(0). Because the probability of
a tie between Z∗

n(1) and Z∗
n(0) is zero, this decision rule is well-defined.

Assume that the estimated average outcomes for the control and treatment groups
are jointly normally distributed with means µ(0), µ(1), and variances Σ(0),Σ(1). This
can be expressed as: (︄

Z(0)

Z(1)

)︄
∼ N

(︄(︄
µ(0)

µ(1)

)︄
,

(︄
Σ(0) 0

0 Σ(1)

)︄)︄
(31)

Given that the treatment is binary, the optimal policy θ̂n simplifies to choosing θ̂ = 1

if Z(1) > Z(0). Conditional on selecting this optimal policy (θ̂ = 1) and observing a
specific arbitrary value Z(0) = z(0), the distribution of Z(1) becomes a truncated
normal distribution above z(0). This truncation occurs because values of Z(1) less
than z(0) would result in θ̂ ̸= 1, contradicting the initial condition θ̂ = 1.

Because this truncation applies for all valid values of z(0), it leads to a positive
median bias in Z(1) when conditioned on θ̂ = 1. In other words, the median of Z(1)
exceeds its true mean θ(1) under this condition. Consequently, the probability that the
estimated outcome for the chosen treatment exceeds its true average is greater than
one-half:
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Pµ{Z(θ̂) ⩾ µ(θ̂)|θ̂ = 1} >
1

2
, ∀µ (32)

This inequality holds for all values of θ, indicating a systematic overestimation in
the selected treatment’s effect due to the winner’s curse phenomenon.

Furthermore, this positive median bias applies symmetrically when the estimated
optimal policy is θ̂ = 0 and Z(0) > Z(1). Consequently, the estimator θ̂ exhibits an
unconditional positive median bias:

Pµ{Z(θ̂) ⩾ µ(θ̂)} >
1

2
, ∀µ (33)

This implies that while Z∗
n(θ) is an unbiased estimator for µ∗(θ) when policies are

fixed, selecting policies based on these estimations leads to Z∗
n(θ̂n) systematically overes-

timating µ∗(θ̂n). This stylized example can be extended to scenarios with more policies
(e.g., additional treatments). Because every policy exhibits a conditional bias (as shown
in Equation 32), the unconditional bias described in Equation 33 holds universally.

Moreover, while the previous example focused on average potential outcomes, the
winner’s curse phenomenon also applies to average treatment effects. Consider a sce-
nario with two treatments (labeled 1 and 2) and a control group (labeled 0). The aim
is to select the treatment that offers the highest estimated average treatment effect
compared to the control. This selection is formalized as:

θ̂n = argmax
θ∈{1,2}

(Z∗
n(θ)− Z∗

n(0)) (34)

Conditional on choosing θ̂ = 1 and the condition Z(1)−Z(0) > Z(2)−Z(0), which
simplifies to Z(1) > Z(2), and given that Z(2) = z(2), the distribution of Z(1) becomes
a normal distribution truncated below at z(2). This truncation occurs because Z(1)

must exceed Z(2) for treatment 1 to be selected. As a result, Z(1) cannot take values
less than z(2) in this context. This leads to a persistent positive bias in the estimated
effect of the selected treatment, demonstrating that the winner’s curse still affects the
estimation of average treatment effects.

When applying CATE as described in Section 2.1.2 to a specific individual i, we also
encounter a truncation in the distribution of the estimated heterogeneous treatment
effect when that treatment is chosen as optimal. This truncation arises because the
treatment is selected based on higher estimated effects. The earlier stylized example
illustrates that overestimation increases the likelihood of a treatment considered to
be optimal. Whether the selection is based on the average outcome, average treatment
effect, or CATE, the estimated effect of the optimal treatment tends to be overestimated
rather than underestimated.
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5.4.2 Shrinkage Estimators

As a potential way to address the winner’s curse in optimal individual treatment assign-
ment, I suggest applying shrinkage to the estimates, drawing them closer to a common
mean. By doing so, predictions that were previously overestimated, and thus led to
a particular treatment being chosen as optimal, are adjusted downward, because they
are brought closer to the mean. This reduction in inflated predictions may result in
assigning a different treatment that is genuinely more effective, thereby enhancing the
estimator’s performance in empirical analyses conducted earlier.

In the forthcoming discussion, I present two shrinkage estimators modified to suit
the current problem of treatment effect prediction. The primary distinction between
them lies in how they treat treatment estimates with high variance, specifically, whether
such estimates should be shrunk more aggressively or less so.

James Stein Shrinker

The first shrinkage method I present is based on the James-Stein estimator introduced
by Efron and Morris (1977). The Stein Paradox suggests that, even without considering
covariates, using historical averages to estimate future averages, or the true underlying
means, is not always the most effective approach. Specifically, their findings indicate
that by adjusting these past averages toward a common overall mean, the estimators
achieve a lower mean squared error and more accurately predict future averages in 16
of the 18 observations they studied.

The concept of this estimator can also be extended to heterogeneous treatment
effects. Suppose we have estimates of the treatment effects τ̂ ki for each individual
i = 1, ..., n cross treatments k = 1, ..., K (for example, obtained using the estimators
mentioned earlier in Section 3.1.1). The shrinkage estimator for the heterogeneous
treatment effect, denoted as ϕ̂

k

i,JS is defined by:

ϕ̂
k

i,JS = τ̂ k + ckJS(τ̂
k
i − τ̂ k), 1, ..., n (35)

Here, τ̂ k represents the average estimated treatment effect for treatment k:

τ̂ k =
1

n

n∑︂
i

τ̂ ki (36)

The shrinkage factor ckJS for each treatment k is calculated as:

ckJS = 1− (n− 3)σ2
ATE∑︁n

i=1(τ̂
k
i − τ̂ k)2

(37)

In this equation, σ2
ATE denotes the variance of the average treatment effect across
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all six treatments. σ2
ATE is determined by calculating the squared standard error of

the coefficient β1 from a simple OLS regression with a binary (dummy) variable. This
regression utilizes the entire dataset and is specified as yi = β0 + β1T̃ i + ε, where T̃ i

is an indicator variable that equals 1 if the individual received any of the treatments
being analyzed. The estimation is performed using the training set. Therefore, if the
variance of the individual treatment effect estimates τ̂ ki is high relative to σ2

ATE, the
shrinkage factor ckJS approaches one, and the adjusted estimate ϕ̂

k

i,JS moves closer to
τ̂ ki , indicating that the predictions of the model for the respective treatment are less
shrunken. I refer to this method as James-Stein Shrinker (JS Shrinker).

Variance Shrinker

The second shrinkage method is inspired by the work of Chen and Zimmermann (2020).
They apply a shrinkage estimator to correct for an upward bias in published stock
returns reported in academic journals. This bias appears to result from journals favoring
stock return predictors that generate large t-statistics, which in turn correspond to
predictors with large sample mean returns. The shrinkage estimator, which I refer to
as the Variance Shrinker, is defined by the following formula:

ϕ̂
k

i,V S = (1− ckV S)τ̂
k
i + ckV S τ̂

k (38)

where the shrinkage factor ckV S is given by:

ckV S =
σk

σATE + σk

(39)

In this equation, σATE is the variance of the overall average treatment effect across
all treatments, while σk is the variance of the average treatment effect specific to treat-
ment k. The variance σk is measured by calculating the squared standard error of the
coefficient β1 from a simple OLS regression of the form yi = β0 + β1 × T k

i + ε. In this
regression, T k

i is a binary indicator that equals 1 if individual i received treatment k,
and 0 otherwise. The regression includes only observations from the control group and
those who received treatment k, and it is performed using the training dataset.

As the variance σk increases while σATE remains fixed, the shrinkage factor ckV S in-
creases, approaching one. This means that the adjusted estimate ϕ̂

k

i,V S is more heavily
shrunk toward the mean τ̂ k of treatment k. In other words, treatments with higher vari-
ance in their average effects receive more shrinkage, which moves individual estimates
closer to the treatment’s overall mean prediction.
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Shrinkage Variation Method

As previously described, both shrinkage methods adjust the predicted treatment ef-
fects by pulling them toward the mean of the predictions for each specific treatment,
calculated as:

τ̂ k =
1

n

n∑︂
i

τ̂ ki (40)

However, if we suspect that simply receiving any one of the six (or four) treatments
is the primary factor influencing outcomes, and that differences among these treatments
are minimal, it may be more appropriate to shrink the estimates toward a common over-
all mean rather than treatment-specific means. To address this, I introduce modified
versions of both shrinkage methods that adjust estimates toward the average treatment
effect across all considered treatments.

The altered James-Stein Shrinker, which shrinks toward the overall mean, is defined
as:

ϕ̂
k

i,JS′ = τ̂ + ckJS′(τ̂ ki − τ̂), 1, ..., n (41)

where τ̂ represents the average treatment effect calculated from the training set for
all treatments:

τ̂ =
1

N(Ti = 1)

n∑︂
i=1

TiYi −
1

N(Ti = 0)

n∑︂
i=1

(1− Ti)Yi (42)

In this equation, Ti indicates whether individual i received any of the treatments
under consideration. The shrinkage factor ck for each treatment k is given by:

ckJS′ = 1− (n− 3)σ2
ATE∑︁n

i=1(τ̂
k
i − τ̂ k)2

(43)

Similarly, the modified Variance Shrinker is defined as:

ϕ̂
k

i,JS′ = (1− ckV S′)τ̂ + ckV S′ τ̂ ki , (44)

with the shrinkage factor calculated by:

ckV S′ =
σATE

σATE + σk

(45)

Here, σATE denotes the variance of the overall average treatment effect, and σk is
the variance of the average treatment effect for treatment k. By shrinking toward the
common overall mean, this modified method accounts for the possibility that the main
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effect is due to being treated in general, rather than to differences between specific
treatments.

48



Results

In this section, I report the results of the previously outlined empirical analysis. I
describe the results when using all six treatments and subsequently the results of the
subset of treatments, only using treatments one, two, four and five.

6.1 Results Without Shrinkage Estimators

Full Set of Treatments

Table 2 presents the average outcomes of matched observations for the full set of
treatments, while Figure 8 illustrates the distribution of these averages over 100 cross-
validation repetitions for the two machine learning methods. The causal forest (CF)
model achieved an average of 1,981 points for matched observations, which is higher
than the overall average across all treatments (1,898 points). This indicates that the CF
model performs better in treatment assignment than does random allocation, making
it the best-performing model in terms of average matched outcomes. In contrast, the
causal neural network (CNN) model performed worse, with an average of 1,884 points
for matched observations. This is below the overall average across all treatments (1,898
points), suggesting that the CNN model under performs random assignment.

Treat 1 Treat 2 Treat 3 Treat 4 Treat 5 Treat 6 Overall

Causal Neural Network 1,931 1,932 1,766 1,967 1,912 1,863 1,884
(18,162) (23,384) (24,762) (11,879) (1,746) (5,661) (85,594)

Causal Forest 2,141 1,899 1,927 1,785 2,189 2,124 1,981
(7,731) (6,062) (26) (37,786) (30,229) (2,308) (84,142)

Average 1,926 1,930 1,764 1,970 1,931 1,871 1,898
(87,900) (86,500) (87,500) (84,800) (87,400) (84,500) (518,600)

Table 2: Mean Outcome of Matched Observations: Full Treatment Set and
No Shrinkage Applied : This table shows the results of the three-fold cross-
validation of the Hitsch Matching repeated 100 times. All six treatments were
considered. For each of the two machine learning methods, the table predicts
the average outcome of matched observations over all folds and repetitions
and in brackets the number of observations that were matched in total. This is
shown for each treatment and all treatments. The last row depicts the average
points for the participants in the respective treatments and the overall average.

Notably, the CF model average matched outcome (1,981 points) is also higher than
the average outcome of treatment 4 (1,970 points). However, for both models, the aver-
age outcome of matched observations specifically within treatment 4 is lower than the
average outcome of that treatment. For the CF model, the average matched outcome
within treatment 4 is 1,785 points, which is significantly below 1,970 points.
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Furthermore, the CF model assigns treatment 4 most frequently, which is expected
given that treatment 4 has the highest overall average outcome. This frequent assign-
ment could be due to the model systematically overestimating the treatment effects for
treatment 4, or because treatment 4 serves as a "baseline" treatment within the mod-
els. If the predicted treatment effects for other treatments are low, perhaps because
the models do not detect significant potential in them, the prediction for treatment 4
remains relatively high, leading to its frequent assignment.

An exceptional result is observed for treatment 5 in the CF model, where the
matched average outcome is 2,189 points compared to the treatment’s average of 1,931
points. This suggests that the model effectively assigns participants who are more
competitively oriented to the "Real-Time Feedback" treatment.

When measuring the number of repetitions where the average matched outcome
exceeded the average outcome of treatment 4, the CF model significantly outperforms
the CNN model. The CF model achieved this in 79 of 100 repetitions, whereas the CNN
model did so in only 1 of 100 repetitions. Additionally, the CNN model frequently had
overall average matched outcomes worse than the mean outcome of treated observations,
occurring in 61 of 100 repetitions.

Focusing on the CF model alone, the results indicate that assigning treatments using
this model is more effective than assigning everyone to the best-performing treatment.
According to the metrics introduced, the CNN neural network-based model performs
much worse than the tree-based CF model.

Subset of Treatments

Previously, a challenge in the comparison method arose because treatments 3 and 6 had
outcomes significantly lower than the other treatments. This discrepancy could cause
models to perform well merely by avoiding assigning treatments 3 and 6 as optimal,
therefore skewing the comparison results. To address this issue, I conduct an additional
analysis using only a subset of treatments, specifically treatments 1, 2, 4, and 5.

The results for this subset are presented in Table 3, with the distributions across
repetitions illustrated in Figure 9. The causal forest (CF) model continues to outper-
form the causal neural network (CNN) model. The CF model achieved an average
outcome of matched observations of 1,983 points (up from 1,981 previously), with 99 of
100 repetitions exceeding the mean outcome (now 1,939 when only the subset of four
treatments are considered). Moreover, the number of repetitions where the average
outcome surpassed that of treatment 4 increased significantly, to 88 of 100.

In contrast, the metrics for the CNN model remain similar to those when all six
treatments are used, and are considerably lower than those of the CF model. The CNN
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Figure 8: Hitsch Matching - Full Treatment Set : This figure depicts the distri-
bution of the average outcome of matched observations of the individual 100
repetitions of the three-fold cross-validation. All six treatments were consid-
ered. The green line depicts the average outcome of participants treated with
treatment four (loss treatment), 1,970 points, and the red line depicts the av-
erage outcome of participants treated with any of the treatments, 1,898 points.

model’s average outcome of matched observations over the hundred repetitions is 1,939
points, higher than in the full sample (1,884 points) but still below the average outcome
of treatment 4 (1,970 points) and equal to the mean outcome of the four treatments
considered. As with the previous results, the CNN model’s average outcome exceeds
that of treatment 4 in only 4 of 100 cross-validation repetitions, and in 52 of 100
repetitions, it falls below the mean outcome of the considered subset of four treatments.

Overall, because the results using the subset of treatments are quite similar to those
obtained with the full treatment set, there is no substantial concern about the validity of
the findings of this paper. This suggests that using treatments with relatively uniform
average outcome levels does not significantly affect the conclusions compared to using
treatments with varying average outcomes.

6.2 Results With Shrinkage Estimators

As in Section 6.1, I start by presenting the results that include all six treatments, and
then proceed to discuss the results for the subset of treatments.

Full Set of Treatments

Using all six treatments, Table 4 presents the average outcomes of matched observations
for two estimation methods combined with the applied shrinkage techniques. Figures
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Treat 1 Treat 2 Treat 4 Treat 5 Overall

Causal Neural Network 1,933 1,928 1,972 1,915 1,939
(30,808) (32,321) (19,045) (2,651) (84,825)

Causal Forest 2,161 1,918 1,789 2,185 1,983
(8,797) (6,583) (38,092) (30,762) (84,234)

Average 1,926 1,930 1,970 1,931 1,939
(87,900) (86,500) (84,800) (87,400) (346,600)

Table 3: Mean Outcome of Matched Observations: Subset of Treatments and
No Shrinkage Applied : This table shows the results of the three-fold cross-
validation of the Hitsch Matching repeated 100 times. Only treatments 1, 2,
4, and 5 were considered. For each of the two machine learning methods, the
table depicts the average outcome of matched observations over all folds and
repetitions, and, in brackets the number of observations that were matched
in total. This is shown for each treatment and all treatments. The last row
depicts the average points for the participants in the respective treatments and
the overall average.

Figure 9: Hitsch Matching - Subset of Treatments : This figure depicts the dis-
tribution of the average outcome of matched observations of the 100 individual
repetitions of the three-fold cross-validation. Only treatments 1, 2, 4, and 5
were considered. The green line depicts the average outcome of participants
treated with treatment four (loss treatment), 1,970 points, and the red line
depicts the average outcome of participants treated with any of the four con-
sidered treatments, 1,939 points.

10 and 11 illustrate the distributions of these methods when used alongside the four
different shrinkage methods. Specifically, when applying the James-Stein Shrinker that
adjusts estimates toward the average treatment effect prediction of each respective
treatment, the average outcome for the causal forest (CF) method increases slightly
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from CF = 1, 981 (the baseline without shrinkage) to CF τ̂ k = 1, 988. Additionally,
the number of repetitions where the causal forest’s matched observations exceed the
average outcome of treatment 4 rises from 79 to 88 of 100. This marks the best overall
performance among all specifications and methods in this empirical analysis. Although
the performance metrics for the causal neural network (CNN) also improve slightly with
this shrinkage method, its overall performance remains low.

When using the James-Stein Shrinker, which adjusts estimates toward the overall
average treatment effect across all six treatments, the performance of the CF remains
largely unaffected, but there is an improvement for the CNN. However, for the CF,
there are no repetitions in which the average points of matched observations surpass
the average outcome of treatment 4. The CF’s matched observations exceed the overall
average outcome of all six treatments in only 54 of 100 repetitions and surpass the
average outcome of treatment 4 in just 2 of 100 repetitions. These results indicate that,
among all combinations of methods and shrinkage techniques, this particular shrinker
applied to the CNN predictions performs the worst. Furthermore, the average points
of matched observations for CNN drop to CNN JS τ̂ k = 1, 892, which is lower than the
average outcomes of all treatments except for treatments 3 and 6.

Applying the Variance Shrinker that adjusts estimates toward the average pre-
dicted treatment effect of each respective treatment decreases the CF’s average points
of matched observations from CF = 1, 981 to CF Var τ̂ k = 1, 975. The number of rep-
etitions where matched observations exceed the average outcome of treatment 4 also
decreases from 79 to 70 of 100. For the CNN, both performance metrics remain almost
unchanged, continuing to exhibit very low performance.

Using the Variance Shrinker that adjusts estimates toward the overall average treat-
ment effect results in a decrease in both the average points of matched observations and
the number of repetitions in which these points exceed the overall average outcome and
the average outcome of treatment 4. This decline is observed across all estimators, with
performance falling well below the initial values of the baseline methods.

Overall, the shrinkage methods have varying effects on the two machine learning
approaches. CNN’s already poor performance could not be meaningfully improved
and even deteriorated further with the application of shrinkage. In contrast, the tree-
based method of CF experienced performance improvements when shrinkage techniques
were applied. This improvement may be because, for tree-based methods, the winner’s
curse was, or still is, a problem hindering optimal treatment assignment, and shrinkage
helps mitigate this issue. For the CNN, however, due to its overall poor performance,
the winner’s curse is likely not the primary factor limiting its effectiveness. Shrinkage
methods that adjust estimates toward the overall mean generally decreased performance
metrics for both methods and both shrinkage techniques, with few instances where the
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shrinkage was beneficial. This may be because the differences between treatments
were so significant that adjusting estimates toward a common overall mean resulted in
excessive shrinkage.

Subset of Treatments

The results using the subset of treatments, specifically treatments 1, 2, 4, and 5, are
presented in Table 5. Figures 12 and 13 display the distributions of the average outcomes
across repetitions.

As discussed in Section 5.4.2, if the true underlying treatment effects are similar
across treatments, shrinkage methods that adjust estimates toward the overall average
treatment effect (ATE) are expected to perform better than those shrinking toward
treatment-specific average predicted effects. In the case of using all six treatments, as
outlined in Section 4.2, this assumption is unlikely. This likely explains why shrinkers
targeting the overall average performed worse than both the baseline methods, and
why the predictions shrank toward individual treatment averages. Consistent with this
reasoning, when analyzing only treatments 1, 2, 4, and 5, which presumably have more
similar treatment effects, the shrinkers pulling toward the overall ATE performed much
better.

Focusing on the causal forest (CF) method, the James-Stein Shrinker (JS-Shrinker)
provided significant performance improvements, similar to the results with the full
treatment set. While the JS-Shrinker that shrinks toward the overall ATE performed
poorly with all six treatments, it improved the average outcome of matched observations
from CF = 1, 983 to CF JS τ̂ = 1, 987 in the subset case. Additionally, the number of
repetitions in which matched observations exceeded the average points of treatment 4
increased from 88 to 92 of 100. When shrinking toward the average predicted treatment
effect of each treatment, the improvements were nearly identical, with CF JS τ̂ k =

1, 986 and 88 of 100 repetitions, respectively.
In line with the findings using the full treatment set, the Variance Shrinker did not

substantially improve the CF’s predictions. The performance metrics for the shrinker
targeting the overall mean remained almost unchanged. However, when shrinking to-
ward the treatment-specific mean, the average points of matched observations decreased
to 1,974, and the number of repetitions where the average points exceeded those of
treatment 4 dropped to 63 of 100.

For the causal neural network (CNN) method, the shrinkers provided only min-
imal performance improvements. The shrinkers that slightly increased performance
from the baseline CNN = 1939 were CNN JS τ̂ k = 1, 940, CNN Var τ̂ k = 1, 940
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and CNN Var τ̂ = 1947. However, for most shrinker variations, the average points
of matched observations decreased and remained low overall.

Although the JS-Shrinker shrinking toward the overall mean of the four treatments
increased the number of repetitions in which matched observations exceeded the average
outcome of treatment 4 from 4 to 6 of 100 times, it also increased the number of
repetitions in which the average points fell below the average of all four treatments
from 52 to 58 of 100 times. This may happen because using this shrinker causes greater
variation in the average points of matched observations between repetitions compared
to applying other shrinkers to the CNN predictions (see Figure 13).

In summary, shrinkers that adjust estimates toward the overall ATE performed
significantly better when applied to treatments with similar outcome levels. In the
subset of treatments, the James-Stein Shrinker outperformed the Variance Shrinker for
the tree-based CF method. Conversely, when the full treatment set is analyzed, the
relative performance between the shrinkers was more vague.
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Discussion

In this section I summarize the results and the few limitations of this paper. First,
when comparing the causal neural network (CNN) and the causal forest (CF) with the
Hitsch Matching method on an empirical dataset, I find that the CF performs best
in assigning the optimal treatment. The findings indicate that selecting the optimal
treatment based on the highest predicted treatment effect from the CF yields a higher
outcome level than simply assigning the best overall performing treatment. In contrast,
the CNN only performs marginally better than random treatment assignment.

The CNN performs significantly worse than the CF, and several factors may explain
this disparity in the performance. First, a key factor for the weak performance of CNN,
also a key limitation of this study, is the sample size. Approximately 1,160 observations
are available for training each neural network, which may be insufficient, especially
since neural networks necessitate splitting data into validation samples. Specifically,
there are about 864 observations per treatment and 879 for the control group, totalling
around 1,740 observations per network. With 2/3 allocated to the training set (1, 740×
2
3
= 1, 160), this amount of data may be inadequate for the neural network to learn

complex patterns effectively. To overcome this limitation, follow-up research could
focus on selecting a use case with a larger dataset that will be more conducive to neural
network training. This would enable us to perform a more rigorous benchmarking of
the CF and CNN methods, and allow for more accurate conclusions about their relative
performance.

Second, tuning neural networks is challenging due to the high interdependence of
hyperparameters compared to the tree-based CF. The hyperparameter optimization
and the error proxy (τ − riskR) used in this study may not have been suitable for the
CNN. To address this issue, a potential solution would be to test the models using a
different meta-learner instead of the R-learner (τ − riskR). Employing an alternative
meta-learner may provide a better fit for the neural network architecture and improve
the hyperparameter tuning process.

Third, the selected hyperparameter grids might have been less than optimal for this
dataset and could have been expanded, but doing so was computationally infeasible
for this study. However, a potential solution could be to use another hyperparameter
optimization framework, such as Optuna. Employing Optuna can speed up the hy-
perparameter tunning process because it efficiently searches large spaces and prunes
unpromising trials for faster results.

Second, I address the issue of the winner’s curse, in which optimal treatments are
systematically overestimated, which is a significant challenge in optimal treatment as-
signments using predicted HTEs. To mitigate this issue, I introduce the James-Stein
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and Variance shrinkers as a solution. In addition, I introduce a modified version of
these techniques that adjusts estimates toward the average treatment effect across all
considered treatments instead. Applying these shrinkage methods improved prediction
performance in some cases. The shrinkers’ effectiveness varied across models and treat-
ment subsets: shrinkers that adjusted towards the overall average outcome performed
poorly when using all six treatments, but much better with the subset of four similar
treatments. Overall, the James-Stein Shrinker led to greater performance improve-
ments than the Variance Shrinker. The tree-based CF method benefited the most from
applying shrinkers, whereas CNN’s performance did not show notable improvements.

The differences between the machine learning (ML) methods and shrinkage tech-
niques are small, and the effects depend heavily on the specific split used in cross-
validation. Several factors could explain these small differences. For instance, although
Amazon Mechanical Turk (MTurk) has advantages over traditional experimental se-
tups, as discussed in Section 2, the dataset is likely noisier, and participants may have
been less sincere when completing the surveys compared to a subset of individuals who
would typically be better compensated and may have more interest in the research.
For example, studies conducted in dedicated research facilities with professional par-
ticipants or specialized panels, where participants receive higher compensation and are
vested in the research, can result in more reliable data.

Moreover, as previously discussed, the dataset may be small to adequately capture
the effects or to allow the ML models to be appropriately trained and compared. In
addition, another possibility is that the selected treatments and experimental setup do
not allow for significant variation in heterogeneous treatment effects; however, findings
from Opitz et al. (2024) suggest otherwise.

Lastly, I recommend exploring and understanding the mechanisms behind the im-
provements in predictions when using shrinkage techniques as follow-up research. Al-
though shrinkage estimators improve the optimal treatment assignment of the models,
the underlying mechanisms remain unclear and have not been extensively explored in
the literature. This study’s shrinkage methods are adapted from classical shrinkage
theories and concepts. They are not based on established asymptotic properties in
the context of estimating treatment effects for optimal treatment assignment. Under-
standing these mechanisms is crucial, given that shrinkers perform differently across
methods and treatment sets. Additionally, the shrinkers used in this paper are adapted
from existing shrinkage concepts and are not based on proven asymptotic properties
in estimating treatment effects for optimal treatment assignment. By clarifying these
mechanisms, it would be possible to develop optimal shrinkers specifically designed to
address the winner’s curse in optimal treatment assignment using ML methods.
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Conclusion

This paper compares two machine learning (ML) techniques, the direct estimation
method of Causal Forests (CF) and the indirect method of Causal Neural Networks
(CNN), for predicting heterogeneous treatment effects (HTEs) for optimal treatment
assignment in a setting where multiple treatments are available. To empirically compare
the two methods, I use a dataset from an online experiment on incentivizing manual
labour Opitz et al. (2024), using a comparison strategy based on Hitsch et al. (2024) and
Nie and Wager (2021). First, I conducted an extensive literature review that addresses
critical challenges in estimating conditional average treatment effects (CATE). Then,
I introduced the problem of optimal treatment assignment and discussed meta-learner
techniques for estimating CATE. Additionally, I explored popular machine learning
methods commonly employed by economists in causal inference, focusing on optimal
treatment assignment.

By comparing the CNN and CF methods using the Hitsch Matching approach on
the empirical dataset, I find that the CF method achieves the best performance in
assigning individuals the optimal treatment from a given set of treatments. The results
indicate that selecting treatments based on the highest predicted treatment effect from
the CF leads to higher outcome levels than simply assigning the overall best-performing
treatment to all individuals. In contrast, the CNN method performs only marginally
better than random treatment assignment and significantly worse than the CF method.

Moreover, I address the issue of the winner’s curse, where optimal treatments are
systematically overestimated, which is a significant challenge in optimal treatment as-
signment using predicted HTEs. To overcome this issue, I introduce two families of
shrinkage estimators: the James-Stein shrinker and the Variance shrinker. This paper
contributes to the ML literature for optimal targeting by applying these techniques in
a novel context: estimating treatment effects for optimal treatment assignment.

I find that employing shrinkage methods can enhance the performance of predictions
in most cases. The shrinkage estimators performed differently across the two models and
the subsets of treatments. Notably, shrinkers that adjust predictions toward the over-
all average outcome performed less accurately when analyzing all six treatments but
showed improved performance when focusing on a subset of four similar treatments.
Overall, the James-Stein Shrinker resulted in greater performance improvements com-
pared to the Variance Shrinker. In addition, the CF method benefited significantly
from applying shrinkage estimators, whereas the CNN method did not show notable
improvements. However, the differences between the performance of the shrinkage es-
timators for the two ML methods are relatively small and are heavily dependent on
the cross-validation split. Therefore, we should be cautious about drawing definitive
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conclusions from the empirical results.
Finally, I intend this paper to provide a guideline for systematically selecting and

comparing different estimation methods to predict optimal targeting policies. Study-
ing methods for optimal treatment assignment is crucial because it enables targeted
policies that maximize the effectiveness of treatments while minimizing potential harm.
By leveraging ML for causal inference, researchers can predict individual responses to
treatments more accurately, and ensure that resources are allocated to those who will
benefit most. Optimal treatment assignment can thus enhance processes in fields like
healthcare, education, and other policymaking by offering personalized treatments and
improving overall outcomes.
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Appendix

9.1 Figures and Tables

Treat 1 Treat 2 Treat 3 Treat 4 Treat 5 Treat 6 Overall

CNN 1,931 1,932 1,766 1,967 1,912 1,863 1,884
(18,162) (23,384) (24,762) (11,879) (1,746) (5,661) (85,594)

CNN JS τ̂ k 1,925 1,935 1,761 1,970 1,912 1,875 1,889
(19,699) (21,875) (21,155) (12,685) (1,746) (5,847) (83,007)

CNN JS τ̂ 1,933 1,929 1,764 1,973 1,932 1,865 1,892
(23,052) (24,090) (19,570) (9,016) (3,159) (6,475) (85,362)

CNN Var τ̂ k 1,926 1,942 1,769 1,968 1,951 1,845 1,994
(10,588) (6,352) (4,051) (23,676) (25,915) (15,443) (86,015)

CNN Var τ̂ 1,936 1,953 1,731 1,969 2,004 1,799 1,891
(9,259) (4,489) (12,599) (12,103) (22,724) (23,964) (85,126)

CF 2,141 1,899 1,927 1,785 2,189 2,124 1,981
(7,731) (6,062) (26) (37,786) (30,229) (2,308) (84,142)

CF JS τ̂ k 2,163 1,967 2,768 1,794 2,194 2,144 1,988
(6,808) (5,174) (1) (39,847) (31,654) (684) (84,168)

CF JS τ̂ 2,141 1,919 1,964 1,775 2,180 2,151 1,988
(5,542) (4,989) (30) (35,939) (35,486) (2,116) (84,102)

CF Var τ̂ k 2,145 1,997 - 1,842 2,221 2,122 1,975
(7,764) (4,549) (0) (50,206) (21,264) (154) (83,937)

CF Var τ̂ 2,154 1,908 1,922 1,789 2,194 2,137 1,982
(7,585) (6,018) (24) (38,632) (29,644) (2,263) (84,166)

Average 1,926 1,930 1,764 1,970 1,931 1,871 1,898
(87,900) (86,500) (87,500) (84,800) (87,400) (84,500) (518,600)

Table 4: Mean Outcome of Matched Observations: Full Treatment Set and
Shrinkage Applied
The table presents the outcomes from a three-fold cross-validation of the Hitsch
Matching method, repeated 100 times. Here, I analyze all six treatments.
The table shows the average results of the matched observations across all
folds and repetitions for each machine learning method combined with the
four shrinkage techniques introduced earlier. I provide the total number of
matched observations in parentheses. These findings are displayed for each
treatment and collectively for all treatments. The final row lists the average
scores for participants within each treatment group and the overall average
across all groups. In the table, "CNN" stands for Causal Neural Network,
"CF" for Causal Forest, "JS" for James-Stein Shrinker and "Var" for Variance
Shrinker. The notation τ̂ k indicates that the shrinkage methods adjust towards
the average treatment prediction specific to each treatment, while τ̂ denotes
the shrinkage towards the overall average treatment effect across all treatments
included in the analysis.
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Figure 10: Hitsch Matching: Using CF, Shrinkage Estimators, and the Full
Set of Treatments
The figure shows the distribution of average outcomes from matched observa-
tions across 100 individual repetitions of 3-fold cross-validation, using Causal
Forests and all four shrinkage methods. All six treatments are included in the
analysis. The green line represents the average outcome of participants who re-
ceived treatment four (the loss treatment), equal to 1,970 points. The red line
indicates the average outcome of participants who received any of the treat-
ments, equal to 1,898 points. The label "individual mean" refers to shrinkage
methods that adjust predictions toward the mean predicted treatment effect of
each specific treatment. Conversely, "overall mean" refers to shrinkage meth-
ods that adjust predictions toward the average treatment effect of receiving
any of the treatments used (as calculated in the training set).
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Figure 11: Hitsch Matching: Using CNN, Shrinkage Estimators, and the Full
Set of Treatments
The figure shows the distribution of average outcomes from matched observa-
tions across 100 individual repetitions of 3-fold cross-validation, using Causal
Neural Network and all four shrinkage methods. All six treatments are included
in the analysis. The green line represents the average outcome of participants
who received treatment four (the loss treatment), equal to 1,970 points. The
red line indicates the average outcome of participants who received any of
the treatments, equal to 1,898 points. The label "individual mean" refers to
shrinkage methods that adjust predictions toward the mean predicted treat-
ment effect of each specific treatment. Conversely, "overall mean" refers to
shrinkage methods that adjust predictions toward the average treatment effect
of receiving any of the treatments used (as calculated in the training set).
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Treat 1 Treat 2 Treat 4 Treat 5 Overall

CNN 1,933 1,928 1,972 1,915 1,939
(30,808) (32,321) (19,045) (2,651) (84,825)

CNN JS τ̂ k 1,929 1,933 1,970 1,934 1,940
(28,507) (28,160) (17,719) (3,218) (77,604)

CNN JS τ̂ 1,929 1,928 1,975 1,930 1,937
(39,136) (27,512) (15,351) (2,679) (84,678)

CNN Var τ̂ k 1,922 1,930 1,967 1,943 1,946
(13,844) (9,688) (29,075) (33,628) (86,223)

CNN Var τ̂ 1,908 1,934 1,955 1,961 1,947
(14,455) (9,414) (29,883) (32,645) (86,385)

CF 2,161 1,918 1,789 2,185 1,983
(8,797) (6,583) (38,092) (30,762) (84,234)

CF JS τ̂ k 2,168 1,975 1,794 2,194 1,987
(7,282) (5,447) (40,006) (31,388) (84,123)

CF JS τ̂ 2,158 1,949 1,780 2,185 1,987
(7,899) (8,545) (35,722) (32,121) (84,287)

CF Var τ̂ k 2,137 1,998 1,844 2,221 1,974
(8,175) (4,567) (50,457) (20,695) (83,894)

CF Var τ̂ 2,162 1,921 1,791 2,187 1,983
(8,736) (6,524) (38,509) (30,454) (84,223)

Average 1,926 1,930 1,970 1,931 1,939
(87,900) (86,500) (84,800) (87,400) (346,600)

Table 5: Mean Outcome of Matched Observations: Subset of Treatment Set
and Shrinkage Applied
The table summarizes the outcomes from 100 repetitions of three-fold cross-
validation using the Hitsch Matching method, considering only treatments 1,
2, 4, and 5. The table displays the average outcome of the matched obser-
vations across all folds and repetitions for each machine learning algorithm,
combined with the four shrinkage methods introduced earlier. The total num-
ber of matched observations is indicated in parentheses next to each result.
These outcomes are presented for each treatment and collectively for all treat-
ments. The final row shows the average scores achieved by participants in
each specific treatment and the overall average across all treatments. In the
table, "CNN" stands for Causal Neural Network, "CF" for Causal Forest, "JS"
for James-Stein Shrinker and "Var" for Variance Shrinker. The notation τ̂ k
indicates that the shrinkage methods adjust towards the average treatment
prediction specific to each treatment, while τ̂ denotes shrinkage towards the
overall average treatment effect across all treatments included in the analysis.
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Figure 12: Hitsch Matching: Using CF, Shrinkage Estimators, and a Subset
of Treatments
The figure shows the distribution of average outcomes from matched observa-
tions across 100 individual repetitions of 3-fold cross-validation, using Causal
Forests and all four shrinkage methods. Here only the subset of treatments 1, 2,
4 and 5 are considered. The green line represents the average outcome of partic-
ipants who received treatment four (the loss treatment), equal to 1,970 points.
The red line indicates the average outcome of participants who received any of
the treatments, equal to 1,939 points. The label "individual mean" refers to
shrinkage methods that adjust predictions toward the mean predicted treat-
ment effect of each specific treatment. Conversely, "overall mean" refers to
shrinkage methods that adjust predictions toward the average treatment effect
of receiving any of the treatments used (as calculated in the training set).

69



Figure 13: Hitsch Matching: Using CNN, Shrinkage Estimators, and a Subset
of Treatments
The figure shows the distribution of average outcomes from matched observa-
tions across 100 individual repetitions of 3-fold cross-validation, using Causal
Neural Networks and all four shrinkage methods. Here only the subset of
treatments 1, 2, 4 and 5 are considered. The green line represents the aver-
age outcome of participants who received treatment four (the loss treatment),
equal to 1,970 points. The red line indicates the average outcome of partic-
ipants who received any of the treatments, equal to 1,939 points. The label
"individual mean" refers to shrinkage methods that adjust predictions toward
the mean predicted treatment effect of each specific treatment. Conversely,
"overall mean" refers to shrinkage methods that adjust predictions toward the
average treatment effect of receiving any of the treatments used (as calculated
in the training set).
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Figure 14: The figure illustrates the age distribution of respondents in the
dataset. The histogram reveals a right-skewed pattern, indicating that most
respondents are younger, with the frequency gradually decreasing as age in-
creases. The mean age (39.26) slightly exceeds the median age (36.00), sug-
gesting that a smaller proportion of older respondents raises the average age.
This distribution suggests that younger individuals are more prevalent in the
dataset, with fewer respondents in older age brackets.

Figure 15: The figure presents the cumulative distribution function (CDF)
of respondents’ age. The CDF represents the cumulative probability of age,
showing the proportion of respondents up to each age. A steeper increase of S-
shaped curve around the median shows that a significant portion of respondents
are clustered near this age, while the gradual slope afterward highlights the
fewer older respondents. The CDF depicts approximately 50% of respondents
aged 36 or younger.
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9.2 Treatment Details

Outlined below are the treatment titles and the texts the participants were shown with
the treatment description.

• Pay for Performance (PfP) As a bonus, you will be paid an extra 5 cents for
every 100 points that you score.

• Goal As a bonus, you will be paid an extra $1 if you score at least 2000 points.

• Gift & Goal Thank you for your participation in this study! In appreciation to
you performing this task, you will be paid a bonus of $1. In return, we would
appreciate if you try to score at least 2,000 points.

• Loss As a bonus, you will be paid an extra $1. However, you will lose this bonus
(it will not be placed in your account) unless you score at least 2,000 points.

• Real-Time Feedback You will receive a bonus that is based on how well you
perform relative to others. On your work screen you will see how your current
performance compares to that of others who previously performed the task. To
that end you will see the percentage of participants who previously performed
the task and whom you will outperform at your current speed. You will receive
a bonus of $0.02 times the percentage of participants who performed worse than
you at the end of the task. That is, you will for instance receive an additional
bonus of $1.00 (=$0.02*50) if you perform better than 50% of the participants.
The ranking shown on the screen is computed assuming you keep the speed with
which you pressed ’a’ and ’b’ for the past 10 seconds. Your current percentile as
well as your currently expected bonus is updated every 10 seconds.

• Social PfP As a bonus, you will be paid an extra 3 cents for every 100 points
that you score. On top of that, 2 cents will go to Doctors Without Borders for
every 100 points.

• Control Your score will not affect your payment in any way.

9.3 Model Selection Criteria τ − riskR

Using the propensity formula from Equation 4, and assuming the expectation of the
outcome given Xi is:

m(Xi) = E[Yi|Xi]
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, and the (heterogeneous) treatment effect is:

τ(Xi) = E[Yi|Xi, Ti = 1]− E[Yi|Xi, Ti = 0] = E[Y 1
i |Xi]− E[Y 0

i |Xi]

Then with E[εi(Wi)|Xi, Ti] = 0,

Yi = Y 0
i + Tiτ(Xi) + εi (46)

εi = Yi − Y 0
i − Tiτ(Xi) (47)

εi − p(Xi)τ(Xi) = Yi − [Y 0
i + p(Xi)τ(Xi)]− Tiτ(Xi) (48)

as m(Xi) = E[Yi/Xi] = Y 0
i + p(Xi)τ(Xi),

εi − p(Xi)τ(Xi) = Yi −m(Xi)− Tiτ(Xi) (49)

εi = Yi −m(Xi)− (Ti − p(Xi))τ(Xi) (50)

such that,

ε2i = ((Yi −m(Xi))− (Ti − p(Xi))τ(Xi))
2 (51)

Therefore, the minimization of τ − riskR leads to minimization of the squared error
term in Yi = Y 0

i + Tiτ(Xi) + εi.

9.4 Tuned Hyperparameters

9.4.1 Causal Forest

• max_features : 0.2, 0.3,...,0.9, 1.0

• max_samples : 0.1, 0.2, 0.3, 0.4, 0.5

• min_samples_leaf : 5, 10, 20, 50

• min_var_fraction_leaf : 0.1, 0.2, 0.3, 0.4, None

• max_depth: 5, 10, 25, 50, 75, 100, None

• n_estimators : 1000

• random_state: 42

For this model, I use econml package in Python.
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9.4.2 Causal Neural Network

For the hyperparameter values of causal neural network, I draw the values from the
parameters used in the original paper of Farrell et al. (2021).

• hidden_layer_size / drop_out_rate - 1 Layer, 60 nodes, 50% dropout rate
- 1 Layer, 100 nodes, 50% dropout rate
- 2 Layers, L1: 30 nodes with 50% dropout rate, L2: 20 nodes with no dropout
- 2 Layers, L1: 30 nodes with 30% dropout rate, L2: 10 nodes with 10% dropout
rate
- 2 Layers, L1: 30 nodes with no dropout, L2: 30 nodes with no dropout
- 2 Layers, L1: 30 nodes with 50% dropout rate, L2: 30 nodes with no dropout
- 3 Layers, L1: 100 nodes with 50% dropout rate, L2: 30 nodes with 50% dropout
rate, L3: 20 nodes with no dropout
- 3 Layers, L1: 80 nodes with 50% dropout rate, L2: 30 nodes with 50% dropout
rate, L3: 20 nodes with no dropout

• learning_rate: 0.1, 0.05, 0.01, 0.001

• alpha: 0.01, 0.1, 1 (Regularization Strength parameter)

• r_par : 0, 0.3, 0.6 (Mixing ratio of Ridge and Lasso regularization. At 1 equal to
Lasso)

• optimizer : Adam

• batch_size: None

• max_epochs_without_change: 60

• max_nepochs : 10000

• seed : 42

I use Lasso/Ridge kernel regularization, therefore, I standardize the covariates for
better learning performance.
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