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Abstract

This thesis focuses on the application of Causal Forests, a prominent causal machine 

learning algorithm, to estimate heterogeneous treatment effects in complex socio­

economic phenomenon. Causal Forests leverage the capabilities of random forests 

to partition the high-dimensional covariate space and identify subgroups where the 

effect of an intervention remains constant. This approach is particularly valuable when 

dealing with heterogeneous causal effects, where a uniform measure of gains for all 

is an unrealistic assumption. Unlike traditional manual methods that are susceptible 

to p-hacking, the algorithm objectively uncovers nuanced treatment effect variations 

through data-driven analysis. The thesis demonstrates the algorithm's potential in 

exploring causal effects and providing valuable policy insights. An empirical illustration 

showcases the modeling of a complex socio-economic phenomenon, such as the gender 

wage gap, and leverages Causal Forests to extract policy learning from the identified 

heterogeneity. The study highlights the algorithm's contribution to credible and robust 

causal inference, bridging the gap between traditional decomposition methods and 

data-informed heterogeneity analysis.

Keywords: Causal machine learning, heterogeneity, policy learning, policy targeting, 

gender gap
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1 Introduction

Since the 1980s, applied economic research has been increasingly focused on achieving 

clearer causal understanding by emphasizing credible identification of parameters. 

Micro-level questions gained prominence as traditional aggregate models struggled to 

establish definitive causal links, especially concerning inflation and unemployment. The 

development of human capital theory, rebirth of institutionalism, efforts to address 

poverty and unemployment, among others, further contributed to the demand for 

research that could offer more credible inferences (Angrist and Pischke 2010).

The evolution of the quality empirical research in applied work covered both model­

based and design-based estimation. The availability of data played a significant role too, 

since earlier on the aggregate data provided less support for micro-level variation in the 

models, thus resulting in unclear inference. As more granular data became available, 

the methods based on that also added in credibility.

The demand was driven in part by the policy evaluation framework too. After the 

stagflation of 1970s, the US government, among others, launched several job training 

programs aimed at reducing the unemployment. At the time it was known that the ideal 

way to approach the questions of cause was with randomization, but the widespread 

adoption of this was lagging (Angrist and Pischke 2010; Lechner 2023). Although the 

idea of randomization-based inference existed since at least the 1920s, it was formalized 

in the potential outcomes framework by Rubin (1974), leading to increased adoption 

of credible policy evaluation practices.

Randomized Controlled Trials (RCTs) were (are) a powerful tool, but expensive and 

sometimes impractical in economics. In his critique, Leamer (1983) not only pinpointed 

the poor quality of data analysis, but also suggested that one should report a series of 

stress tests to establish robustness of the parameters when the ideal RCT is unavailable. 

However, methods that exploited quasi-experimental design like Instrumental variables 

(IV), differences-in-differences (DiD) and regression discontinuity designs (RDD) added 

in volume. Alongside the change in the understanding of basic regression analysis and 

matching, the design-based methodology proved to be more useful, more beloved, and 

more presentable to the general public (Angrist and Pischke 2010; Lechner 2023). The 

potential outcomes framework emerged as a pivotal tool for formulating causal links, 

6



independent of model specifications. In this thesis, I mainly follow potential-outcomes 

notations, though it is not the only framework to explore causality. More recently 

Judea Pearl, a renowned computer scientist developed his own framework with Directed 

Acyclic Graphs (DAGs). DAGs are based on the graph theory and can be more visually 

appealing than potential outcomes, yet the two are very similar in the mechanics (Pearl 

et al. 2000).

The improvement in the quality of applied econometric work was accompanied by 

advancements in computational resources. With increased computing power, firms in pri­

vate sector with substantial capital could collect and store larger datasets. Recognizing 

the importance of random experimentation, some of these firms conducted A/B tests on 

a larger scale and with higher frequency. For instance, Microsoft conducted thousands 

of A/B tests annually (Cunningham 2022b). Meanwhile, because of the exceptional 

accuracy in prediction tasks, machine learning methods have been a preferred choice 

for decision-making in most cases. This is not unexpected, since machine learning can 

be seen as a more practice-oriented integration of statistics and computer science.

Yet the last decade or so saw visible changes in interest for causal identification in the 

private sector too, particularly in the big corporations. While some questions required 

structural modeling from microeconomic perspective (auction design, for instance), 

even more focused on evaluation of causal effects of interventions and targeting (Athey 

2017). Combined with the data-rich setting, this trend has given rise to the fusion of 

causal inference and machine learning. Economists working closely with industry have 

attempted to adopt the machine learning methods to potential outcomes, or prediction 

for causal inference purposes, and as an important step derived important results to 

establish trust in those “black-box” algorithms. Causal Forest is a prominent example 

of causal machine learning algorithms, initially proposed by Wager and Athey (2018). It 

capitalizes on the capabilities of random forests (Breiman 2001) to partition the covariate 

space, identifying subgroups where the intervention's effect remains constant. This 

proves particularly valuable when examining causal effects with heterogeneity, where 

a uniform measure of benefit cannot be prescribed to the entire sample. Estimating 

such heterogeneous treatment effects demands meticulous development of covariates 

and thorough testing of all interactions, which can be a tedious process.

In practical research, it is essential for researchers to develop a pre-analysis plan, 
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specifying hypothesized subgroups where the treatment effect may be stronger or 

weaker. By doing so, researchers proactively outline their analysis approach and 

hypotheses before conducting the actual exploration. This pre-analysis plan serves as a 

protective measure against the risk of “p-hacking” or “data-mining”, where researchers 

might manipulatively test potential subgroups until they find significant variations in 

treatment effects. Such practices compromise the integrity of academic research, making 

it vulnerable to manipulation and false discoveries (Athey and Imbens 2019). Causal 

forests and similar meta-algorithms can offer an objective approach to identify the 

subgroups with the strongest or weakest treatment effects, guarding against manipulation 

and promoting more robust research.

In this thesis, I intend to contribute to the growing strands of literature on causal 

machine learning, and gender wage gap decomposition. I begin by reviewing the 

fundamental concepts of causal inference, focusing on the potential outcomes framework 

with observational data. I briefly summarize the assumptions required to recover causal 

effects in constant effects scenario, and then under heterogeneity, aiming to understand 

how machine learning models can be adapted for causal inference.

Next, I provide a brief overview of machine learning methods and relevant algorithms, 

highlighting their differences and similarities compared to traditional econometric 

modeling. I then delve into the recent emergence of causal machine learning, discussing 

main approaches and results, along with illustrative examples such as prediction policy 

problems, post-selection inference, and doubly-robust estimation.

As an empirical illustration, I revisit the analysis of Huber and Solovyeva (2020) of 

the gender wage gap in the U.S. around the year 2000. They use the DAG framework 

to formulate the estimation of the gap, and its further decomposition into direct 

(discrimination) and indirect (mediated) effect (Huber and Solovyeva 2020). While their 

analysis provides valuable insights into the causal effects of gender perception on wages, 

it also highlights the sensitivity of the estimates due to the modeling choices (Huber 

and Solovyeva 2020). As a natural next step, a more policy-relevant approach involves 

identifying subgroups of women facing lower pay compared to their male counterparts. 

Modeling of a social phenomenon as this with full consideration of the possible covariate 

sets requires clear emphasis on the multiple hypotheses testing in high-dimensional 

space. Using Causal Forests, I explore heterogeneity across various covariates to uncover 
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these subgroups and showcase the algorithm's power in capturing nuanced differences 

within the gender wage gap.

Finally, I conclude my thesis, summarizing the findings and contributions to the 

field of causal inference and gender wage gap decomposition, as well as applications for 

causal machine learning.

It is important to note however that I aim not to add innovation to the methodology 

of Causal Forest, but to utilize it. Nor do I focus on other methods applicable in this 

setup. The setup I follow only includes a treatment variable which is binary, and my 

identification strategy is identical to that of Huber and Solovyeva (2020). Using their 

data and identification, I intend to show how one can apply Causal Forests to explore 

heterogeneity in the gender wage gap.

2 Literature review

2.1 Hindrances to Exploring Causal Effects

Papers focusing on deriving causal inference nearly always rely on the potential outcomes 

framework of Neyman, Rosenbaum, Rubin and others. As per the seminal formulation 

put forth by Neyman (1923), the causal effect of an intervention is conventionally viewed 

as the difference between the observed outcome and the hypothetical outcome that 

would have transpired in the absence of the said intervention. This delineation effectively 

lays the groundwork for the concept of counterfactuals, which has been subsequently 

formalized into the comprehensive potential outcomes framework by Rubin (1974) and 

has since become integral to causal inference research. When conducting an experiment 

with an intervention W , we can have the outcomes measured for control and treatment 

groups as Y 0 and Y 1 , respectively. However, to draw a conclusion that the intervention 

caused the difference in outcomes, we need more than just these measurements. One 

needs a well-designed study, appropriate statistical methods, control of other factors 

that could influence the results, and ideally, random assignment of participants to the 

treatment and control groups. These elements are essential for making valid causal 

inferences and establishing a strong case for the intervention's actual impact on the
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outcomes. The effect of the intervention for an individual i, ceteris paribus, is then

TE = Y 1 -Y 0

or, as one is mostly interested in average of that for the whole sample:

ATE = E[Y 1 -Y 0]

This expression demands that we observe both states of an individual, treated and 

not, and then measure the difference for the person. This is an issue that we would 

not be able to address even if we had access to an infinite amount of data, making 

it the fundamental problem of causal inference (Holland 1986). Specifically, we face 

the obstacle of not being able to observe the “counterfactual” state of an individual 

under a different treatment rule. In other words, we cannot simultaneously see what 

would have happened if the unit received the treatment and what would have occurred 

if they did not. To emphasize, we cannot observe the counterfactual of an individual 

under different treatment rule. Thus we do not have access to the “ground truth” to 

evaluate our attempts estimating the average treatment effect (ATE) either.

2.1.1 Selection Bias

This is important since one might be tempted to estimate the true ATE as a simple 

difference in means of the two group outcomes ATE, and that arises the question of 

selection bias:

ATE = E[Y1 - Y0] = E Y1 W = 1] - E[Y°|W = 1]+ 

+E [Yi1 | W = 0] - E [Yi0| W = 0] = 

= E[Yi1|W = 1] - E [Yi0| W = 0] + bias

However, as mentioned in the previous section, Neyman and Fischer in 1920s had 

already shown that the physical randomization of the treatment assignment helps 

identify the ATE by alleviating the selection bias. As Rubin integrated this idea into the 

potential outcomes framework, we can formulate the need for randomization further:
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Y>,Y? ± Wi

In other words, the potential outcomes in two states should be independent of what 

an individual's treatment status is. This assumption allows the researcher to make 

sure there is no self-selection induced by the individuals' expectation of their gain/ loss 

from the intervention. Although, random assignment mechanism works wonders, it is 

not always cost-efficient, and sometimes downright impossible to randomize anything. 

A natural next step is to try and replicate the results of the randomization with 

observational data. However, when working with observational data, it is critical to 

ensure that there is no self-selection into or out of treatment.

For addressing this issue, critical assumptions have to be made. Particularly,

• the assumption of unconfoundedness + ignorability ;

Ignorability ensures that selection into treatment is independent of the potential 

outcomes, while unconfoundedness requires that no factor (observed or unobserved) 

interferes with the analysis. In a randomized controlled trial both follow from de­

sign. Although mathematically identical, the terms ignorability, unconfoundedness, 

and even conditional independence (CIA) can be used interchangeably, but one 

can see the complementarity between them. One cannot obtain unconfoundedness 

without ignorability, and ignorability without unconfoundedness. To formulate it 

in the potential outcomes framework, let us compose a set of characteristics Xi 

that is sufficiently rich to account for any kind of personal motivation to self-select 

into the treatment. Then,

Y1 , Y ± WilXi

That is, we need to control for the Xi in our outcome equation, as in the following:

E[Yi | Wi , Xi] = E[Yi 0 | Xi , W = 0]+

+E[ (E[^x|Xi, W = 1] - E[Y?|Xi, W = 0])| Xi] Wi + a = 

X0, Xi) + E [^(lj Xi) — X(0, Xi)] Wi + ei

where x(Wi,Xi) = E[Y|Xi, Wi = w] is a flexible control function estimator for Condi­

tional Expectation Functions (CEFs). Partialling out the Xi allows to level the variation 
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in the outcome between the control and treatment, shrinking the bias in parameter 

of interest AT E. LaLonde (1986) tried to see if one could replicate the results of ran­

dom assignment with the control function approach. He started with the job training 

programs of 1970s where the participants were randomized into treatment originally, 

hence he knew what to benchmark against. Keeping the original treatment group, he 

composed six control samples that were different from the original one. He addressed 

the selection into treatment using the two-step correction method as in Heckman (1979). 

The results, apart from wide differences in parameter values, show that control functions 

may not always account for selection bias, especially if the samples are incomparable 

in the first place. It is also essential to achieve a good fit with the /i(Wi,Xi) in the 

outcome equation specified above (LaLonde 1986).

Considering that control functions do not make the units in both groups more 

comparable, only normalize the variation in the outcome, we need to make sure there 

are enough points of comparison for each cluster of Xi values in treatment and control 

groups. This can be achieved with reweighing, particularly on the propensity score 

(PS). The premise of PS is to compose an index out of those Xis and reweigh the 

samples to ensure covariate balance in the two groups.

e(Xi) = E[Wi|Xi] = Pr(W = 1|Xi)

Where the e(Xi) is the propensity score that acts as a proxy for probability to select 

into treatment. This requires the unconfoundedness and

• the overlap assumption (common support);

For every value of that index of individual characteristics, there should be at least 

one matching person in the counter-group. To measure the uncertainty better, it is 

desired to have more than one unit that is comparable. That is,

0 < P(Wi = 1|Xi) < 1 Vi

Reflecting on the job training programs evaluation, Smith and Todd (2005) revisit 

the results of LaLonde (1986) with matching. Their results look better with the original 

estimates from randomization. Yet, even after ensuring the common support, some 

selection bias persists. Generally, as Heckman et al. (1998) show it is extremely hard 
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to get rid of the selection bias without randomization. The control functions and PS 

matching when done properly reduce it, yet do not fully eliminate. Methods exist 

that impose parametric assumptions on errors of a model as in Heckman (1979) or 

Roy (1951), or are non-parametric for high-dimensional settings such as Arellano and 

Bonhomme (2017) or Chernozhukov, Fernandez-Val, and Luo (2023), but those are not 

within the scope of this thesis.

Another critical assumption that is usually understated, yet plagues both random­

ization results and observational studies, is that there are no spillovers. In potential 

outcomes framework it is known as

• the stable unit treatment value assumption (SUTVA) ;

requiring that nobody's outcome is affected by allocation status of the others. 

SUTVA fences against inter-group spillovers of the particular intervention.

With the aforementioned assumptions in mind, one can approach the assessment of 

the causal effect of an intervention by reformulating it as follows:

t = E[Yx] - E[Y?] = E[ Wi Yi 1 - (1 - Wi) Y0 ]

where Wi is the binary treatment status of an individual i. For observational studies, 

we can invoke the unconfoundedness and overlap assumptions to arrive at the Inverse 

Propensity Weighing (IPW) estimator this can be modified as follows:

tipw = E[Y 1 ] - E[Y0] = E[ Wi Yi 1 - (1 - Wi)Y° ] = E \Wi Yi 

e(Xi)
(1 - Wi) Yi -

1 - e(Xi) .

This notation makes use of the propensity score of an individual, ei(Xi), meaning 

how likely is that this particular individual receives intervention, based on the covariate 

values Xi. Weighing by the inverse of the propensity score allows one to correct for 

the selection into the treatment, achieving covariate balance between treatment and 

control groups. This provides a way to make units in the two groups more comparable.

It is important to note that, both control function approach and the IPW are 

sensitive to the choice of Xi and the functional form. In IPW we heavily rely on the 

accuracy of our non-parametric estimates e(Xi), while with control functions it is both 

(1(0, Xi) and (1(1, Xi). It is only natural to ponder if the two can be combined. In 
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fact, as Robins, Rotnitzky, and Zhao (1994) first present it, the combined estimator 

is extremely flexible, is less prone to inconsistency, and is semiparametrically efficient. 

The core concept is to make a sincere attempt to provide the most accurate estimate of 

the CEFs E(Wi,Xi), and then to recover the unexplained part with the IPW with even 

the least accurate e(Xi). We arrive at the new Augmented IPW (AIPW) estimator

TAIPW:
_ = E [W- (Y--p(1,X)) (1-W-) (Yi-^(0,xy) 1
TAIPW = E - ) - i-e(x)

-E[ E(1,X) - E(0,X)]

We can see how the flexible-score logic holds if we start with the good enough PS e(Xi) 

too, since the leftover error is approximately zero, and hence recycles even the most 

“garbage” estimates for CEFs E(Wi,Xi). This is the the so-called doubly-robustness 

property, and the AIPW is sometimes referred to as “the doubly-robust score”. Indeed, 

this method allows for a greater margin for error, as the estimator is consistent when 

either one of the nuisance parameters (propensity score e(Xi) or CEF E(Wi,Xi)) 

converges (I expand on this in Section 2.3.2). As Chernozhukov et al. (2018) show, 

the doubly-robust approach reduces bias in estimator greatly even when the CEF is 

misspecified, which is most likely the case with big-data settings. That is because the 

nuisance parameters are secondary, and we are not interested in their causal inference, 

but need them to derive inference for the treatment parameter. Hence we can treat 

their estimation as a prediction task and employ any “black-box” machine learning 

method that is suitable, and it will not compromise the credibility of the research 

question. In fact, quite the opposite, we add credibility by abstaining from parametric 

specifications. Furthermore, the AIPW has the property of being the optimal one in the 

class of non-parametric estimators, attaining the bound for semiparametric efficiency 

(Hahn 1998). One other remarkable alternative to AIPW, that also hits the efficiency 

bound, is the Targeted Maximum-Likelihood Estimator (TMLE), which can also be 

used to adapt ML methods for treatment effects (Van Der Laan and Rubin 2006).

2.1.2 Heterogenous Treatment Effects

Ultimately, up until now we made the assumption that there is only one treatment 

effect for everybody in the sample. That is the reason we have constant AT E in our 

expressions. As it is mostly unrealistic to think everyone has benefited equally from the 
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intervention, I introduce heterogenous treatment effects in what follows. In fact, the 

main premise of this thesis is the identification of the heterogenous treatment effects. I 

begin by slightly modifying the expression for the AT E:

Yi = l^(0, X) + TiWi + ei 

Ti = T (x) + ei

Even after ensuring that all our assumptions above hold, the identification of the Ti 

requires some technical conditions including independence in higher moments from the 

error term. The best approach is to find subgroups of individuals for whom the effect is 

constant, rather than to grapple with with individual treatment effects. These subgroups 

of individuals are usually defined by some common values of their characteristics Xi, 

which also adds to the interpretation of the whole heterogeneity story. It is more 

relevant to discuss the effect of a marketing campaign for the regular customers of an 

younger age, since it allows us to target customers systematically.

Hence, this is formulated as the Conditional (on characteristics) ATE (CATE):

T(x) = E[Yi1 -Yi0|Xi] = 

= E[Yi1|Xi = x, W = 1]-E[Yi0|Xi = x, W = 0] = 

= /i(1, x) — /i(0, x)

The key to recovering the treatment effects T(x) under heterogeneity is to proceed 

with a rich enough model specification to capture all the possible subgroups along which 

the effect can be constant. This can be particularly problematic with linear specification, 

yet if one has a reason to believe the outcome equation is indeed linear, it is imperative 

to saturate it with interactions among all the variables to reduce the CATE bias to the 

minimum. The main task is to identify those subgroups where the treatment effect is 

relatively stable for every unit, yet variation in covariates Xi is adequate to arrive at 

that subgroup. When running a linear model without all the possible interactions, one 

fails to identify those subgroups, and hence the f(x) remains biased.

This bias is different from the omitted variable kind or confounding bias. Even 

with access to the full set of Xi that are relevant to guarantee unconfoundedness, the 

bias persists unless one minimizes the variance of the error term ei. That amounts to 

saturating the functional form of T(x) such that it maximizes the explained variance by 
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it. The reason variance is important is that it naturally translates into heterogeneity:

Var(Ti) = V ar(r (Xi)) + Var(ei)

As a result, given that the covariance between the two terms on the right-hand 

side is zero (unconfoundedness), ideally a good approximation of t can be achieved 

by maximizing the variance Var(T(Xi)). This conclusion is essential to accomodate 

any machine learning algorithm into the estimation of heterogenous treatment effects. I 

return to this expression later, after introducing a brief background on machine learning 

(ML).

2.2 Background on Machine Learning

In contrast to most of traditional econometrics, machine learning (ML) usually does not 

rely on the assumption that the sample data follows a particular distribution (Athey 

and Imbens 2019). Rather, the ML models are data-driven, which is just another 

word for “non-parametric”. Economics community has been rather slow to adopt ML 

methods, partially due to cultural reasons set out by the top publishing journals (Athey 

and Imbens 2019). As such, methods without attractive large-sample properties have 

not been used in the current research, even though ML offers superior performance 

in complex prediction tasks (Athey and Imbens 2019; Mullainathan and Spiess 2017; 

Athey 2018).

However, ML has been gaining popularity over the last decade among economists. The 

main advantage of ML is, certainly, the superior predictive power, which in part can 

be attributed to the performance evaluation criteria in ML. Compared to traditional 

econometric prediction, ML methods follow the objective of minimizing the error from 

the next observation, which the model has not seen yet. The final model is evaluated 

on a test sample, i.e. the data that the model has not dealt with so far. It allows the 

practitioner to notice the high variance and overfitting accumulated in the training 

stage (Athey and Imbens 2019; Mullainathan and Spiess 2017).

The evaluation processes in ML allow for a systematic selection of the most suitable 

models for a given task. In contrast, traditional econometrics research typically focuses 

on specifying a single model to estimate a particular parameter of interest, with 
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confidence intervals derived from asymptotic theory. However, these estimates can 

be highly sensitive to the chosen model specification, necessitating robustness checks 

by researchers. A growing concern arises from the potential disincentive to report 

controversial robustness checks that might invalidate the initial estimates (Athey 2018).

Herein lies an additional advantage of adopting ML methods: when employed 

properly, they act as a safeguard against distortions caused by data mining and 

p-hacking. The terms in bold in the previous sentence have been generally used as a 

pejorative, however, nowadays the attitudes toward them are changing in part due to 

the ML solutions that minimize human interference and further manipulation of results. 

By subjecting models to careful evaluation and validation, ML methodologies can 

help mitigate the risks of cherry-picking favorable results and enhance the credibility 

of research findings. Thus, ML methods can serve as a valuable tool to promote 

more robust and transparent practices in empirical research, guarding against spurious 

conclusions driven by questionable model specifications (Athey 2018; Athey and Imbens 

2019).

The supervised ML models are well suited for viewing the relationship between 

dependent variable and many predictors. In particular, regularized regression approaches 

allow for a faster and efficient prediction than OLS. When objective is to predict the 

next unit, OLS does not have attractive properties given the number of variables is 

greater than three, let alone when it gets closer to the sample size.

In the “big-data” settings, which is increasingly more common nowadays, the number 

covariates K approaches or exceeds the sample size N , rendering estimation of any one 

parameter in the model almost infeasible with traditional methods. In semi-parametric 

econometrics, kernels have been a dominating approach. However, as the number 

of covariates reach and/ or exceed 20, the kernel methods become computationally 

tedious and inaccurate under the curse of dimensionality (Athey and Imbens 2019). 

One option is to adopt the regularized regression models, such as LASSO or Ridge 

to explicitly penalize the inclusion of the additional variables in the model. With a 

LASSO, for instance, penalty drives some parameters to a zero. While the regularized 

regression is similar to OLS in the sense that it is suitable for linear and low-dimensional 

CEFs, with high-dimensional and non-linear applications, the ML literature can offer 

unsupervised learning methods for dimension reduction. These cases can be better 
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handled by clustering techniques such as K-means clustering or Principal Component 

Analysis (Athey and Imbens 2019; Mullainathan and Spiess 2017). In general, almost 

all ML methods are well-adept to curse of dimensionality, but for the purposes of this 

thesis I focus on tree-based methods mainly.

2.2.1 Decision Trees

The ML literature proposes tree-based algorithms as an alternative to kernels. These 

Classification and Regression Trees (CART) by Breiman et al. (1984) operate 

by splitting the covariate space via optimizing the objective function. In contrast to 

kernels, a tree optimizes by splitting along one variable at a time, and to arrive at that 

one optimal split, it evaluates the change in objective function at each value of every 

single variable. Once the optimal value and the variable is found, the algorithm proceed 

with next split, same as before, but now for both subsets of the initial split. The process 

continues until there is no significant change in objective function achieved with a split. 

For a regression task, a tree minimizes M SE, choosing a value x of X to split on:

Hl(x) = E [ Yi |X e leaf (Xi < x) ]

Hr(x) = E [ Yi |X e leaf (Xi > x) ]

and the split naturally maximizes the weighted difference

Hl(x) - Hr(x)

because that is when the M SE is minimized:

MSE = E[(Yi - K)2] = E[((Yi - Hl(x))2] + E[((Yi - /Rx))2]

Advantages of using the trees include but are not limited to the ease of interpretation, 

better resistance to the curse of dimensionality, and capacity to handle categorical 

variables without prior transformation. The last point also adds to the fact that it is 

an extremely simple to implement as an off-the-shelf algorithm, and does not require 

rescaling and standardization apriori. Furthermore, in contrast with kernel methods, 

decision trees naturally allow automatic variable interaction. As a result, the model 
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significantly adds to the accuracy of a prediction (Athey and Imbens 2019).

Despite the advantages in ease of use and readability, the CART models tend to 

have a large variance, are unstable, and rather discontinuous. This directly stems from 

the fact that it overfits the training sample. To see why the model is prone to overfit, 

one can start by decomposing the Mean Squared Error (MSE) objective into bias and 

variance:

MSE = E[(Yi - YT)2] = V ar(YT) + Bias(YT)2

While YT is estimated on a training sample, the evaluated M SE will be minimal, 

since the model maximizes variance explained and minimizes the bias. Allowing the 

model to reach such level of complexity that perfectly explains the training data is 

not well-tailored for the new data that have not been observed yet. Thus, one should 

control for the model complexity with a penalty, and separate the training data from 

validation/testing sample on which the model is evaluated later.

Most widely used penalization for model complexity is adding a norm of parameter 

values to the M SE, as in ElasticNet (of which Ridge and LASSO are special cases 

when norm is 2 and 1 respectively). To fend the overfitting in trees in particular, 

pruning can be used to get rid of the nodes that add little value to the optimization 

goal. Another method is to implement Cross-Validation (CV), i.e. split the training 

sample into subsamples and train the algorithm on each, depending on the type of CV.

The more recent surge in the literature is to use cross-fitting to fend against 

overfitting. It emphasizes splitting the data into several folds, leaving one out and 

training the model on the rest. That model is then used to make predictions for the 

left-out fold, and this procedure repeats for all the folds. Thus, predictions made for 

observation i, come from the model trained on out-of-sample observations. This is 

critical when the number of covariates is close to the sample size, and one observation 

can have strong distortionary impact on the final prediction for variable Xi (Athey and 

Imbens 2019; Chernozhukov et al. 2018; Belloni, Chernozhukov, and Hansen 2014b).
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2.2.2 Ensemble Methods and Random Forests

Although I characterized single models so far, the most noteworthy results in prediction 

tasks are attributable to ensembles of several models (Athey and Imbens 2019). These 

ensemble methods are extremely popular among practitioners as one can average across 

different models to gain incremental improvements in the objective function. One of the 

most famous, easy-to-implement ensemble methods is the Random Forests of Breiman 

(2001). Other methods include bagging, bragging, subsampling, stacking and boosting 

(see Hastie et al. (2009) for more in-depth discussion of those). For the purposes of this 

thesis, I focus on Random Forests alone.

Figure 1: What is Random Forest? Source: IBM

Random forest is an extension of the CART, also improving on the variability of 

the prediction of a tree (Breiman 2001). The idea is to bootstrap-aggregate a lot of 

trees, hence the forest, and minimize the variance, while keeping the bias constant. It 

also introduces smoothness over discontinuity of a tree. One distinct feature of this 

ensemble method is the fact that number of covariates, K , is fixed, and the algorithm 

randomly shuffles them from one tree to another. This helps decorrelate trees and make 

them seek different specifications to model the outcome. As a result, we get averages of 

thousands of individual trees, which individually are prone to overfit and may even be 

inaccurate, but as an ensemble result in a robust prediction machine (Breiman 2001).
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2.2.3 Predictive Policy Problems

Based on the preceding discussion, it is pertinent to highlight that certain policy­

relevant questions could be rephrased as prediction tasks and directly estimated using 

ML algorithms. For instance, Kleinberg et al. (2015) illustrate the motivation for using 

the off-the-shelf ML for prediction in policy settings. As an empirical example, they 

present the decision of Medicare to cover for joint-replacement surgery for particular 

patients. This problem requires knowing the patient's chance of survival after the 

surgery. Then, at a given cost of surgery and estimated benefit of it, the decision 

reduces to comparing the two under the probability to survive. Intuitively, if a person 

is already at high risk of death due to other underlying conditions, the potential benefit 

of providing surgery for that individual may be outweighed by the associated risks and 

costs. In such cases, medical professionals and policymakers must carefully consider 

the overall health status of the person, the potential impact of the surgery, and the 

likelihood of a successful outcome. It becomes essential to assess the risk-benefit ratio 

to make informed decisions that prioritize the well-being of the individual and maximize 

the efficient use of medical resource (Kleinberg et al. 2015).

The authors analyzed a sample of (N~100,000) patients who had a joint-replacement 

surgery covered by Medicaid, and used LASSO with more than 3,300 variables (risk 

factors, demographics, health and healthcare history, and etc.) to predict the risk of 

not surviving within a year of the surgery. By replacing the riskiest 10% of the patients 

with median-risk individuals, Kleinberg et al. (2015) show that the predicted risk scores 

can save nearly $160 million per year, by postponing the surgery for high-risks who 

would not have died immediately (Kleinberg et al. 2015).

Another example of the direct application of ML predictions is demonstrated in the 

study conducted by Glaeser et al. (2016) on restaurant inspections. In this research, the 

authors organized a competition, fostering a collaborative atmosphere akin to the spirit 

of the ML community, to outsource the prediction algorithm. Participants received a 

dataset comprising more than 30,000 inspection cases and customer review data from 

Yelp for restaurants in Boston.

The winning algorithm, a combination of random forests and boosted trees in an 

ensemble approach, proved highly effective in targeting restaurants for inspections. 

21



It demonstrated the potential to enhance inspection productivity by up to 50%, by 

prioritizing those restaurants with a higher likelihood of health or safety violations 

(Glaeser et al. 2016).

The examples presented on optimal resource allocation only touch upon one aspect of 

a larger and more complex issue. When examining targeting rules under cost constraints, 

it is crucial to consider the heterogeneity of the intervention's effects. In cases like 

hygiene inspections, the focus should be on the impact of the new inspection policy 

and how it varies among different establishments or units (Athey 2017).

Policy rules generated by algorithms may be stable only if the underlying units 

demonstrate consistent behavior over time. However, it is vital to recognize that these 

rules typically pertain to predicting the CEF ^(1,X), overlooking the counterfactual 

^(0,X).

To establish proper targeting rules, it is essential to incorporate both the control and 

treatment groups and jointly estimate the model, thereby addressing selection issues 

and potential confounding factors.

Blake, Nosko, and Tadelis (2015) provide a critical exposition of thinking of policy 

evaluation as a prediction task in online advertising industry, another domain where 

policy targeting plays a crucial role. Ebay's implementation of paid advertising in 

search engines like Google and MSN's Bing initially suggested an impressive 1600% 

return for each dollar spent, based on predictive estimates correlating clicks with sales 

(Blake, Nosko, and Tadelis 2015; Athey 2017).

However, to examine the robustness of these estimates and understand whether the 

ads truly influenced consumer behavior, Ebay conducted an experiment. They stopped 

the ads on one platform while using the other as a control. The results revealed that 

customers who spent money after clicking on the paid ads would have spent the money 

anyway because they were already aware of the brand. Consequently, the causal effect 

of the paid ads was found to be -63% according to Blake, Nosko, and Tadelis (2015), 

indicating negative returns to advertised search.

The study by Blake, Nosko, and Tadelis (2015) exemplifies several important themes, 

including the reduced costs of online experimentation, the involvement of big tech firms 

in econometric questions, the risks of improper methods, and the value of credible 

policy evaluation. Furthermore, in an interview with Scott Cunningham, one of the 
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authors, Steven Tadelis, highlights the changing landscape in the industry due to an 

increasing number of economists and the adoption of more credible methods to address 

issues such as selection bias, endogeneity, and spillovers for inference (Cunningham 

2022a). In her interview, Susan Athey highlights the natural questions that arise 

from large-scale experimentation in large private corporations. She emphasizes the 

significance of adopting design-based and structural approaches, effectively integrating 

them with methods commonly used by computer scientists (Cunningham 2022b).

Indeed, with the increasing availability of big data and the integration of credible and 

rigorous economic foundations, the development of methods and designs for conducting 

research in big-data settings is a natural progression. Hence, in the section below 

I expand on how the ML methods have been properly incorporated into the policy 

evaluation questions.

2.3 Causal Machine Learning

Clearly, ML methods have several potential advantages in prediction tasks over tra­

ditional econometric practices. They can help mitigate overfitting, offer wide range 

of algorithms with better performance, and allow for estimation when the number of 

covariates K is close or exceeds the sample size N . Yet when trying to adopt ML into 

causal questions, we need to be explicit with our goals. When the number of covariates 

is far greater than the sample size, one option is employ regularization. Regularized 

regressions such as LASSO or ElasticNet would work quite well. Alternatively, one 

can employ unsupervised learning to cluster variables, reducing the dimensionality for 

further analysis. Both these options allow us to reduce the number of dimensions for 

further use. The key idea is that ML methods are workable both for post-selection 

inference and prediction. If we are concerned with estimating the AT E and have 

access to relevant variables to account for potential unobservable confounders influencing 

the outcomes, it is feasible to address both objectives simultaneously.

2.3.1 Post-LASSO Selection

Regarding LASSO/Ridge estimators, their consistency is assured under the assumption 

of approximate sparsity, and some extra technical conditions. This notion intuitively 
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suggests that only a fraction Ks of the variables is actually significant, conveying 

substantial information. Consequently, two approaches can be adopted:

a) Directly estimating all variables employing LASSO, which is a straightforward 

albeit somewhat naive method.

b) Utilizing LASSO as a selection method, which proves to be more engaging. This 

method permits the identification of the subset Ks containing the variables 

with critical information, subsequently enabling the implementation of Ordinary 

Least Squares (OLS) regression specifically on this selected subset (Belloni, Cher- 

nozhukov, and Hansen 2014b).

Post-LASSO literature is heavily focused on adapting the penalized estimators for the 

estimation of low-dimensional ATE when the researcher is in a setting with large number 

of covariates, or is highly uncertain about the functional form in which those covariates 

should be included. Belloni, Chernozhukov, and Hansen (2014a) demonstrate how 

highdimensional inference can be done properly. One of their applications is revisiting 

the Donohue and Levitt (2001) study on the effect of abortion legalization on crime rates. 

Donohue and Levitt (2001) used differences-in-differences (DiD) specification with state 

and time fixed effects. In their setting, the estimate for the causal effect rely on the 

assumption that the time-variant state characteristics capture all the remaining variance, 

hence leaving clear causal effect of the intervention (Belloni, Chernozhukov, and Hansen 

2014a). They implement LASSO to select variables with non-zero coefficients and 

then conduct OLS regression with selected variables. The results show much tighter 

confidence intervals compared to the “kitchen sink” OLS with 284 variables, but they 

also highlight increased uncertainty surrounding the causal effect of abortion legalization 

(Belloni, Chernozhukov, and Hansen 2014a).

Overall, Belloni, Chernozhukov, and Hansen (2014a) showcase the potential of using 

Post-LASSO techniques to refine causal inference in settings with a large number 

of covariates, providing more precise estimates and addressing concerns related to 

overfitting.

Another noteworthy application of the (double) post-LASSO is Bach, Chernozhukov, 

and Spindler (2018), in which authors try to capture the heterogeneity in the gender 

wage gap. Bach, Chernozhukov, and Spindler (2018) tried to model the wages using a 

high-dimensional regression of socioeconomic factors, including marital status, region, 
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education, tenure, occupation and industry, religion, race, children, and many more. 

Their data is a 1% representative sample of the US population provided in the American 

Community Survey (ACS). In scenarios with a large number of covariates, evaluating 

heterogeneity through two-way interactions can be computationally expensive. To 

address this, the researchers implemented the double-LASSO post-selection method 

introduced by Belloni, Chernozhukov, and Hansen (2014b). This approach proved more 

useful than a simplistic mean-decomposition of the gender gap, as it allowed for a 

detailed analysis of which subgroups of women face the most significant challenges.

Per their findings, the gender gap in classic human capital variables like education 

and experience was relatively small. However, significant variations were observed 

across different industries, occupations, and family compositions. Notably, women in 

financial and public service sector jobs were found to be more underpaid compared to 

men with similar observable characteristics (Bach, Chernozhukov, and Spindler 2018).

This example holds particular importance for the purpose of my thesis, and I will 

revisit it in the application section to further explore its implications.

2.3.2 Double/debiased ML

The problem is that LASSO/Ridge are still parametric, that is, model specific. They 

heavily depend on the functional form assumptions. To estimate finitely many interac­

tions and higher order relationships among those K variables in a data-driven manner, 

tree-based methods or neural networks are better suited.

An alternative way to filter noise is to use a control function that incorporates all 

relevant variables simultaneously. This comprehensive approach aims to account for 

potential confounding factors and improve the accuracy of the analysis. Instead of 

obtaining a subset Ks for subsequent OLS, we adopt a different approach by partialing 

out the intricate correlations from the variables in Y (outcome) and W (treatment), 

which yields biased post-ML error terms. The key to debiasing lies in the Neyman- 

orthogonal score, which helps remove the effects of nuisance predictions, and turns to 

a residual-on-residual analysis to achieve unbiased estimation. This is a more generic 

definition that allows us to construct orthogonal score for any estimator (Chernozhukov 

et al. 2018). One can do so by constructing a loss function with a regularizer which 

would be first-order insensitive to the nuisance parameters. The AIPW we discussed 
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before is one of the well-known orthogonolized scores. This, along with the cross-fitting 

we discussed previously, under unconfoundedness allow for the debiased estimate of 

ATE given we have K >> N (Chernozhukov et al. 2018).

As a result, given the doubly-robust score tipw, the estimate TIPW converges to the 

oracle value, if one of the nuisance parameters e(Xi), X(Wi, Xi) converges at a faster rate 

n1/4. One can estimate those nuisance parameters with any conventional ML algorithm, 

yet it is important to ensure there are no inconsistencies coming from the choice of the 

method. As such, using cross-fitting for those parameter accounts for the idiosyncrasies. 

To avoid confusion, I define cross-fitted parameter predictions e-i(X), X-i(W, X) for 

a unit i in fold K of our sample, where the model is trained on all the observations 

outside this unit's fold.

A noteworthy example of double/debiased ML is the study by Farrell, Liang, and 

Misra (2021). In this research, the authors assess the performance of eight different 

feed-forward neural networks for estimating the uplift (marketing terminology for the 

ATE), in the context of an email catalog campaign.

Beyond obtaining valid estimates for the uplift, Farrell, Liang, and Misra (2021) also 

demonstrate the proper execution of policy targeting using the well-approximated under­

lying functions. Additionally, their findings provide fast and optimal convergence rates 

for the neural networks, thus encouraging this approach for causal inference in complex 

settings (Farrell, Liang, and Misra 2021). This work highlights the potential of neural 

networks for addressing policy evaluation questions and leveraging double/debiased ML 

for more accurate and robust causal estimations (Farrell, Liang, and Misra 2021).

2.4 Uncovering Heterogeneity with Causal Forests

In the pursuit of causality, another approach to implementing ML involves modifying 

the objective function of CART to uncover heterogeneity in the estimates. This thesis 

focuses on this particular method, which will be described in detail below.

To make trees useful in the potential outcomes framework, it is essential to be clear 

about the objectives. Traditional trees partition the covariate space by optimizing the 

objective function, often using MSE for regression tasks, aiming to maximize prediction 

accuracy. However, in the context of causal inference, prediction is not always the 
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primary goal, and adjustments are necessary. Furthermore, the lack of access to the 

ground truth hinders the evaluation of the model on a test set. I start by rewriting the 

expression from Section 2.1.1 :

Var(Ti) = Var(r(Xi)) + Var(et) 

f(Xi) = /(1,x) - /(0,x)

The baseline method for partitioning the covariate space would be the kernels as 

K-NN, which calculate the CATE as

T= k E Yi - k E Yi k S1 (x) k S0 (x)

where S1(x) is the set of k nearest treated units to the given x. This estimator is 

unbiased and has attractive asymptotics, but as mentioned already, fails as the covariate 

space expands in dimension.

Random Forests, on the other hand, are excellent at partitioning, yet often used 

without any regard to their asymptotics. Without the latter, it is hard to infer a 

relationship and construct confidence intervals. In the potential outcomes framework, 

where we cannot observe both states for an individual and hence test the accuracy of 

the algorithm, it is imperative to refer to asymptotics to conduct hypothesis testing. 

Wager and Athey (2018) provide first formal results on asymptotics of Random Forest 

estimates.

Furthermore, several ML meta-learners have been developed that also start with 

targeting estimation of the CATE through CEF / (w, x). S-learner, for example, esti­

mates a single model for / (W, X) = E[Y|X, W ], while T-learner estimates separately 

/ (0, x), and / (1, x) for treatment and control groups. Both meta-algorithms then take 

the difference for CATE T(Xi) = /(1,x) - /(0,x).

It is apparent that, these models fail to recognize the nature of the data, mainly 

lack of the account of the selection bias. T-learner fails by fitting each of the CEFs 

separately, which only holds under simple CATE is the difference. S-learner behaves 

more optimally by fitting one CEF for both groups, but performs well when the groups 

are balanced. Künzel et al. (2019) propose the X-learner, that on the other hand, 
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constructs the counterfactual outcome for each unit using predictions from separately 

estimated j(0,x), and j(1,x). Those counterfactuals are subtracted from the ac­

tual outcome value for each unit , and the CATE is taken as the weighted difference 

T(X) = g(x)Ti(X) - (1 - g(x))To(X).

Künzel et al. (2019) reanalyze the effect of mail-induced peer-pressure on the voter 

turnout in the US. The original authors find no evidence of heterogeneity in the effects, 

whereas the program turned to be quite effective raising turnout by 8.1%. Capturing 

heterogeneity in the sample properly would allow for more targeted mailing for the 

next campaigns (Künzel et al. 2019). Applying the three meta-learners (S, T, and X) 

Künzel et al. (2019) conclude that for the group of people who voted 3 times in the 

past 5 elections the impact of the social pressure is the highest. They uncover nearly 

50% more turnout due to the mailing among those households (Künzel et al. 2019).

While X-learner performs quite well under randomized treatment, it fails to construct 

counterfactuals from Xi in observational studies (Künzel et al. 2019). Causal Trees 

help recover from this issue by taking the g(X) as the propensity score, thus estimating 

CATE in a doubly-robust fashion.

Below I describe how to grow Causal trees into a forest, both initial versions of 

Causal Forests and the later generalization of them into Generalized Random Forests 

by Athey, Tibshirani, and Wager (2019).

2.4.1 The Mechanics of a Causal Tree

Athey and Imbens (2016) show how to modify the objective properly and introduce the 

Causal Trees. Essentially, the idea is to feed the CATE as an objective function to the 

tree, so that it maximizes the heterogeneity with each split.

Let us start by defining average outcome

j(w, x; n) = E [ Yi(w') |X G l(x; n) ]

where n denotes the tree structure, and l(x; n) the leaf of the tree where the given x falls.

t(x; n) = E [ Yi(1) — Y:(0) |X G l(x; n) ] = j(1, x; n) — j(0, x; n) 
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then is the average treatment effect, conditional on X .

The estimated analogs, / and T, are the mean outcome within the leaf of the tree 

for treatment/control, and the difference in means between the groups in the 

same leaf, respectively. This was the definition for the initial Causal Tree algorithm 

proposed by Athey and Imbens (2016). Later on, they incorporated the doubly-robust 

AIPW score for the treatment effects as already mentioned:

tAIPW (Xi) E Wi (Y-^-i(i,x))
E e-i(X)

(1-Wi) (Yi-^-i(0,X))
1-e-i(X)

-E[ / -i(1,X) - / -i(0,X) ]

Thus, the counterfactuals are constructed via inverse-propensity score weighting and 

CEFs, which also account for the selection bias, but requires the common support. 

Drawing on the results of Chernozhukov et al. (2018), if one of the nuisance parameters 

e-i(X), / -i(W, X) converge at a rate n1/4, the whole score is unbiased and converges 

to the actual treatment effect value. This encourages the use of ML algorithms with the 

greatest predictive power in a setting as an intermediate step, out-of-sample predictions 

of which are then plugged into the final model.

Next, define MSE as

1 2MSEt(Ste, Sest; n) = St- £ (ri - T(Xi, Sest; n) - r?

1 1 ieste

Ste, Sest are the testing and estimation samples respectively. The difference here with 

the traditional train/test split in modeling is an aspect called honesty. A tree is 

honest when none of the observations used for the training, i.e. growing it appear in 

the validation sample. This is the second criteria, apart from MSE modification that 

allows to draw asymptotic conclusions in the CF framework.

Additionally, the honest approach helps with handling the outliers. As such, in first 

step, the tree splits on the outlier value of Y and maximizes heterogeneity in treatment 

effect. Yet, if we were to take the treatment effect in the leaf built around outliers, it 

would yield a spurious and large (in absolute value) numbers compared to the average 

effects. Whereas when we simply take the tree structure from the first step, and use it 

to actually estimate the effects the bias diminishes. Since it is a novel data sample and 
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does not contain the same outliers.

Note that by taking the MSE of the treatment effect, not the custom one over the 

outcomes, we account for the fact that heterogeneity in outcomes and heterogeneity in 

treatment effects are caused by different sets of variables. As such, a person might be 

assigned a new drug by the physician based on the risk factors and how far along the 

disease is progressed. Yet to explore the variation in how that drug worked it serves 

a richer insight to check for the patient's environment, diet, personal relationships 

and etc. Although those factors are rarely properly accounted for, heterogeneity along 

them could reveal a better treatment assignment mechanism for the next trials. Hence, 

heterogeneity provides value of exploring the new features for policy learning.

Moving on with MSET, it appears that the expression contains an infeasible term 

Ti. However, the tree algorithm comes in handy, since Ti is stable within the leaf. That 

is, the objective function involves a constant term, and hence subtracting the Ti2 in the 

above expression won't change anything from the optimization viewpoint. As a result, 

our objective function is

EMSET = Etest [Etrain[ MSET]]

and using the fact that

Etest[Ti] = Etest[T]

we simplify the MSE estimator to

mSEt(Ste,Sest;n) = |^J ZiesTE (Ti — T(Xi,Sest;n))2 — t2 =

= — EitsiE T(Xi, Sest; n) * T(Xi, Sest; n) + |g^ Ei^ T2(Xi,Sest; n) =

= — |sM ZitsiE T2(Xi,Sest;n)

Consequently, when making each split, the algorithm looks for the value of the 

Xi that maximizes the heterogeneity of the treatment effect. In contrast with all the 

previous methods, this objective function optimizes over a higher order moment of the 

CATE expression, directly maximizing the variance and finding subgroups via recursive 

partitioning, where the treatment effect is relatively stable for everyone.
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2.4.2 Types of Trees and Growing them into a Forest

Wager and Athey (2018) present two types of causal trees, the so-called double-sample 

trees, very well suited for studies with treatment allocation mechanism as good as 

random. In the first stage, the tree optimizes on the difference between the outcome 

regression models for two groups f = ¡1(1,Xi) — J1(0,Xi).

Wager and Athey (2018) also suggest propensity trees for observational studies, 

which implies fitting a tree by predicting the treatment dummy, completely ignoring 

the outcome, and then estimating the f on the test set:

The process described in the previous section outlines the mechanics for one causal 

tree. To grow a forest, one needs to bootstrap-aggregate (bagging) many more trees, 

and decorrelate those imposing limits on the number of variables used for each tree. 

However, to reach the desired asymptotics, it is recommended to use subsampling 

instead of bagging, as follows:

1. From the original sample draw a random subsample sb (without replacement)

2. Build a tree:

- start by splitting the subsample sb further into training and test parts

- select the smaller subset m out of all K variables to use for this tree

- choose each split such that it minimizes MSEt = —Var(f(Xj,))

- continue until no meaningful split is available/ minimum number of units per leaf 

reached

- estimate f on the test set and save as fSb 3. Repeat the steps above B number of 

times, growing a forest with the total of B trees and saving B estimates for the f 4. 

Take the average of all those estimators B X)beB TsB

A tree might be heavily reliant on data and sample size and hence validation splits 

can be viewed as wasting the data budget. While a forest due to the its subsampling (or 

bagging) nature, allows the practitioner to avoid withholding a part of the sample for 

validation, because each tree works only with a subset of the whole sample and we have 

out-of-bag sample to validate its estimates. This is a nice perk especially when working 

with limited data budget, so that an individual's own outcome does not influence its 

subgroup assignment. As a result, the out-of-bag estimates in the forest can substitute 

the need for cross-fitting procedure.
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The grf package in R (Tibshirani et al. 2022) allows implementing the CF for doubly- 

robust estimation. The nuisance parameters, if not explicitly given, are calculated 

using the regression forests. However, by nature the algorithm does not estimate the 

propensity scores per se, it partitions the covariate space in a way that best imitates the 

outcomes of propensities. That is, we do not get to see e(Xi ) and plug it to estimate 

the Tj, we get the result with solving a classification task as a workaround.

2.4.3 Main Results

Wager and Athey (2018) derive the asymptotic results for both causal forests and 

random forests, given that the following conditions hold:

• Honesty

• Subsampling the trees for the forest

• Continuous covariates

• The response function p.(Xi) is Lipschitz-continuous

Forests are asymptotically Normal and centered (Wager and Athey 2018):

MX ) - h(x ) 
an (X )

N(0, 1) ; an (X) ’o 0

2.4.4 Drawbacks of Causal Forests and GRF

The two methods of growing a CF differ in the way they handle the nuisances. The 

first method is not well-suited for addressing pure confounding, which can lead to 

biased estimates of causal effects. On the other hand, the second method initially grows 

a propensity tree, effectively managing confounding issues. However, it struggles to 

perform optimally in scenarios with high heterogeneity, potentially compromising the 

accuracy of its estimates in such cases. Balancing the trade-offs between these methods 

is crucial to ensure reliable and unbiased estimates of causal effects in different contexts 

(Athey, Tibshirani, and Wager 2019).

Athey, Tibshirani, and Wager (2019) develop a generalization of tree-based ensemble 

methods, of which the CF is a specific case. Taking the modifications further, the 

authors introduce the Generalized Random Forest (GRF) for causal inference. Although 

operating under slightly different objective function, the GRF algorithm significantly 

improves upon the shortcomings of the two CF approaches. Furthermore, it performs
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well in the setting with both high heterogeneity and pure confounding.

This success is due to local recentering nature of their algorithm. Where in the previous 

versions we used nuisance functions to estimate Y and W and then plug it into the 

CF, now we add one more step: take nuisance parameters and estimate the out-of-bag 

residuals Yi = Yi — p-i(X) and Wi = Wi — e-i(X). These residuals are then imputed 

to train GRF and get the treatment effects. This is the value of orthogonolization 

proposed by Robinson (1988). To understand it better, let us recall that before, the 

algorithm had to fit two disjoint CEFs /i(0,X) for control and ^(1,X) for treatment 

groups respectively. This leads to flawed results when the degree of confounding or 

heterogeneity increases Athey, Tibshirani, and Wager (2019). Robinson (1988) proposed 

the following modification in a partially linear model:

m-i(X) = E [Y|X = x] = E[YP|X] + E [W |X]t (X) =

= /d-i(0, x) + e-i(x)t(x);

That is, now the CEF is estimated without conditioning on the treatment status, and 

hence we need to adjust for the selection into treatment via the term e-i(x)T(x), with 

the PS. Next, we can rewrite the partially linear model as

Yi = /^-i(0, x) + WiT(x) + €i;

Yi — m-i(X) = (Wi — e-i(X ))t (x) +

Subsequently, the treatment effect T(x) is estimated by minimizing the following 

expression:

E[q|Xi, Wi] = E[Yi — m-i(X) — (Wi — e-i(X))t(x)X, Wi]

This leads to a new expression for the treatment effect, compared to the original

CF:

A = Ei ai(X) (Wi — e-i(X)) (Yi — m-i(X))
T Ei ai(X) (Wi — e-i(X))2

where ai(X) is the frequency with which individual i falls into the same leaf as the test 

point x we have. That expression uses the adaptive kernel weights to average out the 
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trees in the forest. When the treatment effect is constant, the weight is also constant, 

and is equivalent to running OLS with orthogonolized values. It is noteworthy how the 

problem of estimating constant versus heterogenous treatment effects is evident here. If 

the goal is to estimate the constant effect, one could easily assume equal weights, or 

focus on the subgroup with the strongest signal. Whereas heterogenous treatment effects 

are spread out through subgroups, and it is imperative to assign corresponding weights 

to them depending on the strength of the signal. By the strength of the signal I mean 

the variance of the treatment effects (heterogeneity). Hence, the problem converges to 

identifying the subgroups where the the effect is constant within, but is highly variable 

across them. This is exactly the mechanism behind the trees as previously discussed. 

The corresponding weights then are the ai(X).

Moreover, Nie and Wager (2021) develop a quasi-oracle meta-learner for estimating 

heterogenous treatment effects, the R-learner, allowing to accommodate any other ML 

algorithm into the structure. It is only an incremental step to employ R-learner, as 

the grf already runs on the similar objective function to their R-loss, it is the moment 

condition above plus some regularizer (Tibshirani et al. 2022).

However, there are other modifications such as Local Linear Forests (LLFs), to 

correct for the local discontinuities in the original model. Since the CF is a step-function, 

the predictions on the edges of the covariate support can be poorly modeled.LLFs are 

designed to exploit the adaptive kernel ai from the recursive partitioning, and then 

running a linear model with these corresponding weights (Friedberg et al. 2020). Hence, 

the LLF can be seen as a more robust alternative to traditional kernel regressions and 

Friedberg et al. (2020) provide empirical and theoretical benefits of doing so.

As an example of policy learning with Causal Forests, Athey and Wager (2021) 

demonstrate how one can construct optimal policy rules that are also clearly communi­

cable to the public. Based on the semiparametric theory, given a doubly-robust estimate 

for the CATE for the whole sample, they showcase how to find policy targeting that 

minimizes regret. In an empirical setting, they use the data from Greater Avenues for 

Independence (GAIN) program from 1986 (Athey and Wager 2021). The program served 

to provide job search training and other educational resources, and had a randomized 

assignment mechanism (Athey and Wager 2021). Participants' results were recorded for 

the following 9 years, and evaluations showed significant benefits to the average wages 
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ex-post (Athey and Wager 2021).

Despite the fact that allocation to GAIN program was random, it differed for each 

county, and the pooled county analysis would be confounded. Athey and Wager (2021) 

use 54 variables to assume unconfoudedness and implement the doubly-robust Causal 

Forest to arrive at the income gains for the whole sample. The doubly-robust specifi­

cation results in closer estimates to the original treatment effect than naive difference 

in samples, emphasizing the value-added in controlling for confounders (Athey and 

Wager 2021). The key takeaway, however, is that they subsample units who would 

have benefitted more than the whole sample (i.e. CATE greater than the total ATE). 

An example of their policy rule is in the figure below, which is reported to yield an 

additional 0.08 benefit to the original ATE of 0.14 for the whole sample (Athey and 

Wager 2021).

depth 1 policy depth 2 policy

is high school graduate

was paid 3 quarters ago

Figure 2: Policy trees for the GAIN study, Source: Athey and Wager (2020)

A recent method developed to address the question of “whom to treat” is the 

rank-weighted Average Treatment Effect (RATE), proposed by Yadlowsky et 

al. (2021). RATE is a model-agnostic approach that aggregates the predictions of 

CATE obtained from a diverse set of estimators. These CATE predictions are then 

ranked based on the potential benefit they offer from the treatment, sorting them from 

the highest to the lowest. Yadlowsky et al. (2021) provide asymptotic confidence for 

the reweighing process and demonstrate the effectiveness of their approach through 

real-world examples, including personalized hypertension treatment and uplift modeling. 

Because of the nature of the medical data, they use censored version of Causal Forests, 

among other algorithms, to estimate CATE for the sample of SPRINT and ACCORD 

studies (Yadlowsky et al. 2021). For the uplift modeling, they use large online trial 

data provided by Criteo and use usual implementation of Causal Forests. In their study, 

RATE successfully uncovers significant heterogeneity in the marketing context, while in 
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the medical case, they do not find substantial evidence of heterogeneity (Yadlowsky 

et al. 2021). This highlights the versatility and potential of the RATE method in 

identifying subgroups that could benefit the most from an intervention, making it a 

valuable tool in various fields of study. I demonstrate the application of RATE as a 

test for heterogeneity in my empirical application.

Up to this point, the focus has primarily been on applications of causal machine 

learning with selection on observables. However, the objective functions used in 

these methods demonstrate a remarkable flexibility to incorporate quasi-experimental 

approaches such as instrumental variables (IV). An illustrative example of this is 

presented by Athey, Tibshirani, and Wager (2019), who introduce “Instrumental Forests”, 

built on the same principles of honesty, subsampling, and a modified doubly-robust 

objective.

In their study, Athey, Tibshirani, and Wager (2019) revisited the argument put 

forward by Angrist and Evans (1996), which used the sexes of the first two children as 

an instrument for labor force participation. While Angrist and Evans (1996) concluded 

with a local ATE, Athey, Tibshirani, and Wager (2019) delved further into exploring the 

heterogeneity in labor supply among mothers who already had two children of mixed 

sexes.

To extend their analysis, Athey, Tibshirani, and Wager (2019) introduced hetero­

geneity modeling based on several covariates, including the mother's age at the birth of 

her first child, her overall age, education, race, and the father's income. Their findings 

indicated that the negative labor supply was mainly driven by mothers with lower 

husband's income. However, they also pointed out that the measure of income itself 

can be endogenous, potentially compromising the further interpretation of the results. 

Nevertheless, the application of Instrumental Forests demonstrated the capability to 

uncover important heterogeneity in the context of labor supply, thus showcasing the 

power of causal machine learning in the presence of instrumental variables. These 

extensions and modifications (IV Forests, LLF, RATE) are readily available in an 

easy-to-implement fashion with the grf package in R (Tibshirani et al. 2022).

Overall, in this review, I discussed the growing literature behind the estimation of 

heterogeneous causal treatment effects with machine learning. I started by laying out the 

definitions of treatment effects in potential outcomes framework, discussed the selection 
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bias when treatment assignment is not randomized, and reviewed assumptions to cope 

with it in observational studies. I also defined treatment effects under heterogeneity, on 

which all the further sections build. With a brief review of particular ML methods, I tried 

to outline how they can be adapted for different policy problems. Especially, I focused 

on the estimation of treatment effects under heterogeneity and unconfoundedness using 

Causal Forests. In what follows I build on the results clarified in this section to recover 

the heterogeneity in gender wage gap.

3 Empirical Illustration

In this part I analyze the gender wage gap following Huber and Solovyeva (2020). They 

compare how sensitive the estimates of different methods are, for the sample from 

National Longitudinal Survey of Youth (NLSY) in the year 2000. Their results are 

particularly interesting for non-parametric estimation of the gap and its decomposition 

into explained and unexplained parts. Moreover, their setup and assumptions lead to 

more credible interpretation of the gender gap estimates. However, instead of focusing 

attention on one number and assuming the difference between the groups is constant, I 

relax that by testing heterogeneity using Causal Forest (CF).

Implementing CF allows me to estimate variation in the direct effect (gender bias/ 

discrimination) by the design of the algorithm. Hence, I do not focus on the details of 

decomposition of the explained and unexplained parts of the gap, because the method 

I use does not deliver the estimates of the total effect.

Furthermore, I do not engage in selection-into-employment-corrective measurements, 

and what follows is completely based on men and women who had a job at the time of 

the survey. Huber and Solovyeva (2020) in their analysis reported IV correction for 

labor market participation, using number of children as an instrument, however the 

results were not significant. One can clearly use doubly-robust IV forests for addressing 

this issue with a better instrument, yet explaining the motivation of people to join labor 

force is beyond the scope of this thesis. I aim to utilize the CF to showcase how one can 

effectively leverage machine learning for policy learning purposes under heterogeneity. 

Uncovering heterogeneity allows me to realize the parts of the working population where 

the discrimination is the highest, that then can be targeted to efficient policy rule, or 
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scrutinized further in reducing the gap.

The gender wage gap has been receiving growing attention of the community well- 

beyond labor economists recently (Blau and Kahn 2017). Initial attempts focused 

heavily on trying to obtain one numb er for the average gap. Those attempts mostly 

included few handpicked variables from human capital theory as controls, yet the main 

attention had been directed at the average difference between men and women (Bach, 

Chernozhukov, and Spindler 2018). Classic approach to decompose the gender wage gap 

would incorporate a linear model which is then broken down in the spirit of Oaxaca- 

Blinder, identifying the part of the variance in the gap due to the model specification, 

and the unexplained part. The latter is usually referred to as the discrimination (Blau 

and Kahn 2017). Later attempts were targeted at developing more non-parametric 

framework for decomposition, and DiNardo, Fortin, and Lemieux (1995) is most notable 

example of this trend. DiNardo, Fortin, and Lemieux (1995) develop a kernel-based 

semiparametric reweighing estimator for decomposing the density of inequality. Their 

attempt incorporates ideas of counterfactual densities, bringing more clarity over the 

Oaxaca-Blinder sample difference, and relaxes the linearity assumption (DiNardo, Fortin, 

and Lemieux 1995). They also address the assumption that the gender gap is constant 

for everybody in the sample, by trying to locate the most expressive areas in the density 

of income (DiNardo, Fortin, and Lemieux 1995).

One can see the similarity with the propensity score weighing, however, estimation 

of counterfactuals in DiNardo, Fortin, and Lemieux (1995) is not based on credible 

assumptions, and hence prone to mistaking the two distributions (Yamaguchi 2015). 

The IPW methods based on a causal identification formulated in potential outcomes or 

DAG frameworks are better at addressing this shortcoming (Yamaguchi 2015; Huber 

and Solovyeva 2020).

Furthermore, it has been clear by 2010s that exploring heterogeneity along the 

covariates is necessary (Blau and Kahn 2017). However, to this date, only few studies 

address the decomposition of the gender wage gap under heterogeneity. They mostly 

focus on the one specific characteristic and report the variation in the gap along those 

(race, ethnicity, occupation, married/not). Thus, they effectively ignore the fact that 

the difference in wages between men and women can vary simultaneously with many 

other covariates (Bach, Chernozhukov, and Spindler 2018).
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However, analyzing a complex socio-economic phenomenon such as gender wage 

gap requires a proper formulation. Given the recent surge in the methods allowing 

to address the estimation when the number of parameters to estimate grows close to 

the sample size, or even exceeds it (see Belloni, Chernozhukov, and Hansen (2014b), 

Bach, Chernozhukov, and Spindler (2018)), it is only natural to expect the literature 

on heterogeneity in the gap to expand.

One noteworthy attempt to capture the heterogeneity in the gender wage gap is Bach, 

Chernozhukov, and Spindler (2018). The authors tried to model the wages using a 

high-dimensional regression of socioeconomic factors, including marital status, region, 

education, tenure, occupation and industry, religion, race, children and more. As the 

number of covariates becomes large, running two-way interactions of those and assess 

heterogeneity among them becomes too costly. Hence Bach, Chernozhukov, and Spindler 

(2018) implement the double-LASSO post selection method by Belloni, Chernozhukov, 

and Hansen (2014b). Their data is a 1% representative sample of the US population 

provided in the American Community Survey (ACS). Compared to Oaxaca-Blinder 

estimates of 14% pay gap, their analysis shows that only a small fraction of women 

experience the gap of that magnitude. They recover heterogeneity among women with 

lower education, where median wage gap was at least 29%. Moreover, for married 

women the difference is 9% to 12% larger than to single women. The gap is also reported 

to be more severe in finance and professional services industry (Bach, Chernozhukov, 

and Spindler 2018). Overall, Bach, Chernozhukov, and Spindler (2018) showcase how 

to locate the severity of the gender wage gap leveraging a rich set of individual level 

covariates. My aim in this section is similar, but while accounting for heterogeneity 

is a significant leap forward in the literature, it is imperative to recognize that the 

issue of identification needs to be addressed. This requires a clear framework to think 

about the factors affecting and affected by the gender image in the society. I follow the 

framework formulated in Huber and Solovyeva (2020) to achieve clarity in interpreting 

my estimates.
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3.1 Data

I obtained the data used in the analysis by Huber and Solovyeva (2020) from the 

Harvard Dataverse (Huber 2019), which provides open source datasets for re-analysis 

purposes. All the variables are indicated for the year 2000, unless explicitly stated 

otherwise. In their analysis, Huber and Solovyeva (2020) operate with the following 

set of variables from NLSY 1979 data: The outcome variable of interest (Y) is the log 

average hourly wage in the past calendar year reported in 2000. The set of post­

group characteristics X, that potentially mediate the effect of gender on wages, includes 

marital status, years in marriage, region of residence, urban area indicators, education 

level, employment history, and health-related factors. Huber and Solovyeva (2020) 

also use higher-order and interaction terms to reach a more flexible propensity score 

specification. A more detailed list is given in the Table 1, along with the two-sample 

t-stats of these covariates for both sexes.

Table 1: Unlogged outcome and covariate means for both sexes, 

Source: Author's replication based on Huber and Solovyeva 

(2020)

Variables Men Women p-value of the difference

wage 19.37 14.16 0.00

married 0.57 0.57 0.89

yrs married 6.43 7.54 0.00

North East 0.15 0.16 0.85

North central 0.24 0.24 0.61

West 0.21 0.19 0.25

yrs in current region 14.84 15.25 0.00

SMSA 0.81 0.82 0.57

yrs in current SMSA 13.48 14.20 0.00

Degree highschool 0.46 0.42 0.00

some college 0.21 0.27 0.00

college or more 0.20 0.21 0.41

first job before 1975 0.06 0.05 0.00

40



Variables Men Women p-value of the difference

first job in 1976-79 0.11 0.13 0.08

jobs ever changed 10.55 9.24 0.00

current tenure (weeks) 276.06 212.66 0.00

primary sector 0.23 0.08 0.00

transport 0.11 0.05 0.00

trade 0.13 0.14 0.32

finance 0.04 0.06 0.00

service, entertainment, business 0.12 0.12 0.79

proffesional services 0.11 0.30 0.00

public administration 0.05 0.05 0.75

yrs in current industry 3.56 2.62 0.00

Occupation: managerial 0.23 0.26 0.02

sales 0.07 0.08 0.02

clerical 0.06 0.21 0.00

service 0.10 0.16 0.00

farmer or laborer 0.28 0.04 0.00

machine operator 0.17 0.06 0.00

yrs in current occupation 2.18 1.73 0.00

worked full-time 0.85 0.60 0.00

weeks employed total 661.87 560.41 0.00

weeks unemployed total 62.32 49.74 0.00

bad health no work 0.05 0.05 0.07

yrs absent due to bad health since 1979 0.33 0.56 0.00

Potential confounders C related to factors that pre-date an individual's birth include

religion, race, birth order, parental education, parental place of birth and 

year of birth. Huber and Solovyeva (2020) also acknowledge that further confounders 

not available in this dataset but correlated with W, X, and/or Y exist. The Table 2 

summarizes the mean differences along the confounders C .
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Table 2: Pre-birth confounder means for both sexes, Source:

Author's replication based on Huber and Solovyeva (2020)

Variables Men Women p-value of the difference

Race:black (ref: hispanic) 0.29 0.30 0.41

white 0.52 0.52 0.84

not religious (ref: catholic) 0.04 0.03 0.03

protestant 0.50 0.50 0.96

other religion 0.10 0.11 0.04

born in US 0.94 0.94 0.54

mother born in US 0.88 0.90 0.10

mother education highschool 0.39 0.37 0.05

mother's education some college 0.09 0.09 0.62

mother's education college or more 0.08 0.07 0.41

father born in US 0.88 0.88 0.41

father education highschool 0.29 0.30 0.56

father's education some college 0.09 0.08 0.10

father's education college or more 0.13 0.12 0.08

order of birth 2.98 3.07 0.14

age in 1979 17.50 17.61 0.05

4 Methodology

4.1 Gender as an Exogenous “Treatment”

This setup builds on the discussion in the literature review, yet requires some clarifica­

tions. First, I specify that treatment effect refers to the difference in outcome in the two 

states, however one defines the two states. One can safely replace the treatment variable 

with the gender variable, and the logic still holds. The AT E now is the difference in 

outcomes between men and women, i.e. gender gap. Note that this refers to the total 

gap, not the discrimination/ bias. To understand how it is deconstructed into indirect
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and direct effect, I present the DAG in Figure 3.

Figure 3: A causal graph of the set up. Source: Author's creation based on Huber and 

Solovyeva (2020)

Where Y is the variable of interest - wage, W is the gender binary variable, X is a 

set of mediators (covariates) that pass on the influence of gender on the wage, and C is 

a set of confounders pre-dating the gender binary. The logic is as following: Gender 

affects the wages not only directly (perception of the employer), but also through 

decisions made over the lifetime conditional on the gender. The latter indirect effect 

is more convoluted but actually recoverable, while the direct effect, can be interpreted 

as the discrimination.

The definition of the “treatment variable” here is neither the subject of the modern-day 

discourse on gender transformation, and nor should its infeasibility be a concern in this 

analysis, because it is the perception of the employer about the applicant's gender and 

gender-job compatibility that defines the causal effect. Ultimately, I am interested in 

comparing similar men and women, and along which paths their wages differ the most 

and how. One can argue about the nature of the counterfactual world, and the ideal 

scenario being the one with “non-discriminatory wage” which is neither male nor female 

wage. The philosophical discussion of the reference wages is also beyond the scope of 

this thesis, and better addressed by Sloczynski (2013), among others.

Altogether, this is the kind of causality without manipulation. Since the potential 
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outcomes framework (or at least its proponents) implied that W is the manipulated 

treatment assignment, this sort of a question would not be deemed causal with gender 

as W (Pearl 2009). This would result in leaving out numerous interesting questions 

unanswered. Yet few focused in exactly defining this kind of causality, ignoring the 

thesis that there is no causality without manipulation. Because, as Pearl (2009) puts 

it, the nature is in itself a great mechanism that senses values of some variables, and 

determines what value others take, with no need for human interference.

Notwithstanding, there are background characteristics that affect a person's wages 

that predate their birth. That includes their race, parental education, socio-economic 

status, societal norms, and etc. Together those variables likely have enough power 

to explain why individuals choose one career path over the other, or obtain higher 

education conditional on their gender. This is the set of counfounders C , that allows 

us to secure unconfoundedness. Ideally, the C should incorporate all the possible 

background variables that can affect one's further life-decisions. However because I am 

following Huber and Solovyeva (2020), the set is limited to what the original authors 

had access to.

The DAG above can also be summarized with a convenient partially-linear model:

Yi = TiWi + m(Xi) + g(Ci) + Ci 

Wi = e(W = 1|C) + & 

Xi = f (Ci) + W + n

Where the functions m(^),g(), f (•), e(^) are fully non-parametric. This representation 

allows me to define the impact of the large set of variables more flexibly, and view them 

as nuisance components. The assumptions needed to decompose the gap into causal 

direct and indirect effect, as stated in Huber and Solovyeva (2020) are the following:

{Y(W,X), X(W)} ± W | C 

Y(W,X) ± X(W)| W, C 

0 < e(W = 1|C) < 1

The first assumption above is unconfoundedness, also referred to as “sequen­

tial conditional independence” in the literature of mediated effects (Pearl 2012; 

Huber and Solovyeva 2020). That is, given a rich enough set of important pre-birth 
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characteristics C, a person's wage, and life decisions are independent of the gender. 

This is to say that the employer's perception of gender is formulated by the societal 

norms, among other confounders, and for men or women with the same confounders 

any deviation in outcomes should be random. The second assumption is similar, and 

together with unconfoundedness implies that after partialling out confounders, gender 

does not have explanatory power over the life decisions of individuals, and hence the 

potential wages are independent of these conditional choices. The third is the overlap 

assumption, requiring the individuals to have a comparable unit based on the propensity 

score P(W = 1|C), where W = 1 refers to a male gender and W = 0 to female.

These assumptions allow one to partialling-out the confounders Ci as following.

X = Xi - f-i(Ci) 

Y = Yi - g-i(Ci) 

Y = TiWi + m(Xi) + €i

Overall, this is how the assumptions of unconfoundedness, ignorability, overlap and 

SUTVA translate into the setting with mediated effects. To further understand the 

intricacies of it, I define total effect as a composition of direct and indirect (mediated) 

effects.

4.2 Direct and Indirect Effects

Huber and Solovyeva (2020) use several methods in their work to compare how the 

gender gap estimates change with their specifications. The authors start with Oaxaca- 

Blinder decomposition, and then relax the linearity assumption using inverse propensity 

weights (IPW). The expressions to estimate the direct and indirect effects of gender are 

derived from the “mediation formula” of Pearl (2012):

ATE = E[Y1 - Y0] = E[ Y(W = 1, X(W = 1)) - Y(W = 1,X(W = 0)) ]+

+E[ Y(W = 1,X(W = 0)) - Y(W = 0, X(W = 0)) ]

Essentially, the first expectation on the right-hand side is the indirect effect of 

comparing the wages of men with characteristics X that are more common among men, 
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against men with Xs more similar to those of women. The second term, in turn, is the 

expression for comparing wages of men with Xs similar to women's to those of women 

with those characteristics. While the first difference is about how gender plays through 

one's life decisions with a ripple effect, the second hints at discrimination. Hence, it 

also corresponds to the unexplained part of the Oaxaca-Blinder decomposition (Huber 

and Solovyeva 2020).

For non-parametric identification Huber and Solovyeva (2020) use IPW with following 

formulas for each effect:

IE = E [ Y W 1 E r Y W 1-Pr(W = 1|X,C) 1
1E ~ E [ Pr(W=1|C)J E |_Pr(W=1|x, C) 1-Pr(W=1|X) J

DE = E [ Y W 1-Pr(W=1lX, C) 1 _ E r Y(1-W) 1
E Pr(W=1|X,C) 1-Pr(W =1|X) E 1-Pr(W =1|C)

However, their analysis primarily focuses on estimating the magnitude of the gap, 

which may create the impression that the gap remains uniform across the sample or 

population with different characteristics. To gain a more comprehensive understanding 

of variations in the gap, it is crucial to examine the heterogeneity of the estimates. This 

becomes particularly significant in optimal policy learning, as it enables us to identify 

and target more susceptible groups, leading to improved intervention outcomes when 

compared to indiscriminate interventions.

To address this, I employ Causal Forests, a fully non-parametric technique designed 

to identify heterogeneity within subsamples (Wager and Athey 2018; Athey, Tibshirani, 

and Wager 2019). By utilizing doubly-robust estimation, we can effectively leverage 

areas where the gap is larger. These findings enable identification of specific target 

groups for further policy interventions.

Clearly, the expression for direct effect as put forward by Pearl (2012) can be 

recognized as the main output of the CF algorithm. This is not unexpected, because 

by design the algorithm identifies the subgroups in which conditional of covariates, 

the treatment effect is constant. These subgroups also have to be formed fulfilling the 

common support requirement, hence resulting in the expression allows me to see the 

difference in wages between men and women from the same backgrounds, that is not 

mediated through the life decisions.
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5 Results

By the nature of the CF algorithm, the estimates of between-group differences at each 

leaf are the direct effects specified above. This is because a tree would split on the 

covariates such that the treatment effect is constant in each leaf. That is, in each leaf, 

conditional on X, the difference between groups is unaffected by it, considering region 

of common support along the propensity scores.

5.1 Exposition: A Causal Tree

First, I try to grow a causal tree (described earlier). This serves us well for interpretation 

and facilitates the grasp of the forest as a tree-based method. Trees are easier to 

interpret, because we can visualize the splits and see the estimates in the final nodes 

clearly. Whereas a forest is an ensemble of thousands of those trees, each (potentially) 

independent of another, which makes visualizing a forest extremely complicated. For 

further purposes, a good rule of thumb to visualize a forest is as following: Consider 

a new observation being taken by a tree. Based on the values of the covariates it is 

classified into a leaf, and the estimate for that unit is the average of the leaf. This 

occurs across large number of trees, each having different splitting rules and hence 

different leafs for the same observation. Finally, the estimates of all those trees are 

averaged over corresponding weights.

The tree displayed in Figure 4 originally contained 64 splits, which were pruned 

through cross-validation to reduce complexity and avoid overfitting. This is for example 

purposes, and does not incorporate propensity weighting based on confounders C . Yet 

still one can see the clear interpretation of the leaves, suggesting farmer or laborer 

women in agriculture/ manufacturing face a gap of 43%, while those not in agriculture/ 

manufacturing experience only 20%. Taking this further, I proceed with a proper 

analysis with Causal Forests.
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Figure 4: An example of a causal tree. This model is for exposition purposes only, as it does 

not control for confounders C. It is pruned, however, as the original tree had 64 splits. This 

is to show how one can cope with overfitting with trees. Source: Author's calculations

5.2 Direct Effect or the Gender Wage Gap

Running several versions of CF, I start with the specification where gender is taken 

as random, not controlling for any confounders, and then add the controls and con- 

founders. The algorithm can take the propensity scores as an external input, but 

if not explicitly given, the nuisance components are calculated automatically. In a 

randomized assignment settings, one can input the share of treated as a propensity score. 

However, in my setup, I ensure the propensities are calculated from the confounders, 

and then input them to the final Causal Forest. The “proper” specification is the 

one that takes estimates e(C) and also partials out the C from the Y and X ( i.e 

j(X, W) = E[Y|X, W, C]). I present the results below.

Augmented Inverse-Propensity Weighted (AIPW) ATE is the recommended 

way to compute average treatment effects in observational data (Tibshirani et al. 2022). 

It consists of averaging the doubly robust scores, where T-i(Xi) and e-i(Ci) are out-of­

bag estimates. The Iq stands for all the individuals within the given quantile of the 

effects (I display this later in figure 6 ).
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Table 3: Comparison of ATE estimates from different imple­

mentations of CF, Source: Author's calculations

Estimates Standard error Specification

0.205 0.015 Baseline CF only with covariates X, gender as random

0.218 0.018 CF with automatic propensity estimation, X only

0.196 0.015 CF with propensity scores over confounders W

0.215 0.018 Kitchen-sink CF (both X and W)

0.208 0.015 Proper CF

Compared to IPW with W estimates of Huber and Solovyeva (2020), I recover a 

larger direct gender wage gap. My point-estimate is 0.208 with smaller standard errors 

0.015, which is within the confidence interval of the estimates of Huber and Solovyeva 

(2020), they recover 0.171 with standard error 0.042. This is an expected difference, 

since the methods we use are yet both non-parametric, still quite dissimilar. Moreover, 

the standard errors I report are based on out-of-bag estimates of the forest.

Because I have doubly-robust estimates of the gender gap and also correct for 

the sample biases by using out-of-bag nuisance functions in validation, we can more 

confidently predict individual treatment effects based on the forest. In Figure 5 I display 

the distribution of the individual treatment effects. The graph shows the direct gap 

estimated for each set of individual characteristics X, and C present in the sample.
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Figure 5: Distribution of estimated individual treatment effects, or the individual gender gap. 

Source: Author's calculations.

5.3 Quantiles of the Gender Wage Gap and RATE

I also check the difference between quantiles of treatment effects in Figure 6, as mentioned 

above, to gain a clearer understanding of the heterogeneity in the effects than on a basic 

histogram. Note that the average estimates of the treatment effect that is obtained by 

averaging doubly-robust scores may not be monotonic. That is, the average estimate 

for group Q3 may end up being smaller than the one for Q2. Asymptotically, these 

differences should disappear, but this is a common occurrence in small samples.
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Direct effect by quantiles

quantile

Figure 6: The estimates for gender gap accord to the quantiles. Source: Author's calculations.

Another way to look at this is the more recently developed Ranked ATE (RATE) 

by Yadlowsky et al. (2021). RATE essentially allows one to see if there is heterogeneity 

in the estimates by comparing each of the percentiles of the treatment effect to the 

ATE, and then ranking those differences. This is very similar to the quantiles approach 

described above, but more uniform and informative. Also, by calculating the area under 

the RATE curve, one would get the total gains from implementing an intervention, for 

p-th percentile of more susceptible population versus extending it to everyone. If there 

are HTEs, the curve will start high for the individuals with the highest expected benefit 

and decline until it equals ATE when q=1, i.e., everyone is included.
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Targeting Operator Characteristic

q
(95 % confidence bars in dashed lines)

Figure 7: Ranked Average Treatment Effects (RATE). Source: Author's calculations.

From the Figure 7 it is clear that the gender gap is clearly uniformly positive (in 

favor of men) and there is heterogeneity in how it is manifested. Again, the vertical 

axis is the difference between that percentile gender gap and the average gender gap.

5.4 Propensity Scores

As Huber and Solovyeva (2020) assume unconfoundedness, and because it plays a 

pivotal role in identification, I make sure to check if it holds. As outlined previously, 

controlling for confounders, the outcome and covariates are independent of gender, 

thus, I estimated propensity scores to reweigh based on them. This should give more 

comparable individuals based on their pre-birth characteristics. Subsequently, I ensure 

that I have enough comparable units across my estimated propensity scores by checking 

the overlap region.

52



Figure 8: Propensity scores Pr(W=1|C). These are estimated with a separate regression 

forest and then fed to the final CF. Source: Author's calculations.

The scores on the Figure 8 being bounded away from extremes indicate that male 

and female composition is comparable, and there is a reasonable overlap region. This is 

in line with what Huber and Solovyeva (2020) obtained with their propensities. All the 

estimates reported in this section are based on that region of common support.

5.5 An Omnibus Test for Heterogeneity

As the CF uses Robinson (1988)' orthogonalized loss function as an objective, it can 

also serve as a back-test to check how well the forest has performed, as following:

Yi - (-i(Wi,Xi) = af (Wi - e-i(Ci)) + 3 (f-i(Xi) - f) (Wi - e-i(Ci)) + e

T := n E?=i 1-i(Xi)

This is essentially decomposition of the residuals into the components corresponding 

to treatment effect and its variance. The coefficients a and 3 allow me to evaluate the 

performance of the estimates. If a = 1, then the average prediction produced by the 

forest is correct. Meanwhile, if 3 = 1, then the forest predictions adequately capture 

the underlying heterogeneity.

In addition, 3 is a measure of how the CATE predictions covary with true CATE.
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Therefore, the p-value on the estimate of coefficient also acts as an omnibus test for 

the presence of heterogeneity. If the coefficient is significantly greater than zero, then 

we can reject the null of no heterogeneity. However, coefficients smaller than 0 are not 

meaningful and should not be interpreted.

Table 4: Best linear fit using forest predictions (on held-out

data), with heteroskedasticity-robust (HC3) SEs.

Estimates Standard error t-statistic p-value

alpha 1.01 0.07 13.65 0

beta 1.48 0.23 6.32 0

The results suggest that the algorithm correctly identifies the constant part of the 

gender gap, while also uncovering significant heterogeneity along the covariates.

5.6 Heterogeneity in the Gender Gap

Thus far, I have only investigated the average estimates, and checked if there is 

heterogeneity present in the gender gap. Now I turn to show where exactly the variation 

in the gap originates from. It is important to keep in mind that all the estimates of the 

forest are the direct effects, so they can be interpreted as gender bias under sequential 

identification.

5.6.1 Variable importance

First, I consider what variables the forest deemed important, i.e. along which of them 

trees split most often. This is a rough measure to look at, because just as with random 

forests, this measure is ambiguous (usually one uses the variance inflation factor 

(VIF) to reweigh the variable importance). Nevertheless, the Figure 9 is a good starting 

point.
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Figure 9: Variable importance of the Causal Forest, shows the variables on which splits were 

made most often. The actual number of variables is larger, only the most important ones 

displayed. Source: Author's calculations

5.6.2 Heterogeneity along the quantiles

The approach of comparing all covariates across quantiles of treatment effects presents 

a fuller picture of how high-treatment-effect individuals differ from low-treatment-effect 

individuals. In the Table 5 in the appendix I display the average values of the covariates 

according to each quantile of the direct effect. The actual table is quite large, so I 

include visualizations of only those variables that have significant changes in the means 

for each treatment effect quantile in the Figure 10.
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Figure 10: Partial dependence plots to see how average characteristics differ among the 

quantiles presented above. Source: Author's calculations.

5.6.3 Partial dependence

In traditional heterogeneity estimation using generalized linear models, understanding 

the interrelations of variables is relatively straightforward as one can easily examine 

them visually. However, with ensemble machine learning models, interpreting the effect 

of variables on the outcome becomes more challenging due to their black-box nature. To 

address this, the SHAP (SHapley Additive exPlanations) method provides a powerful 

tool for interpreting such models by summarizing the meaningful value-added by each 

variable. This approach allows us to report the average contribution of each variable 

to the outcome, similar to parameter values in a linear regression (Lundberg and Lee 

2017). While SHAP is effective, it can be computationally intensive for certain models, 

and there is currently no available wrapper for the Causal Forest of the grf package.

To overcome this limitation, I employ an alternative method that is computationally 
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lightweight and easy to implement. I present a set of more meaningful plots by fixing 

all other covariates at their medians and allowing variation only along one of them. 

This approach enables the traditional ceteris paribus interpretation, which helps us 

understand the impact of individual variables while holding other factors constant. 

However, it is essential to note that the error bars in these plots might be wide since 

occurrences of these median values for other covariates could be rare in the data. 

Despite this limitation, this approach provides valuable insights into the heterogeneity 

of treatment effects in the Causal Forest framework.

Figure 11: Evaluating the variation in gender gap by quantiles of experience (left) and 

marriage (right) as of 1998. All the other variables fixed at their medians, and hence this can 

be interpreted as ceteris paribus effect. The intervals are wide because not many observations 

were concentrated at or around the median values in the sample. Source: Author's calculations

The Figure 11 above shows that among more experienced individuals, controlling for 

everything else, the gap can narrow. Yet the wider confidence intervals do not provide 

any clarity over this observation. The scarcity of the comparable men and women along 

median values of covariates is even more expressive in the right plot in Figure 11. Here, 

although one can see the gender wage gap increasing in the years of marriage, the error 

bars suggest the difference can be constant.

The Figure 13 in the appendix provides a hint that the gap is monotonically 

decreasing as the time spent out of the labor market increases. One can observe that 

men and women recover differently from a job displacement. I take this observation 

further by allowing variation along the years in marriage too, holding everything else
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constant.

This relationship presented in the Figure 12. The color scheme allows to locate the 

subgroups with the most severe gender wage gap experienced. Supporting the previous 

observation, I recover a significant difference in wages among individuals who had less 

than 6 weeks of unemployment in total and were married for at least 12 years. This 

approach to interpreting the findings of Causal Forest can directly translate into a 

policy rule, that for instance, targets individuals who are in long-term marriage and 

also have not been displaced for long.

Severity of the gap 
all else fixed at the median

0.342 0.333 0.301 0.266 0.219
(0.03) (0.0285) (0.0382) (0.0406) (0.0448)
0.337 0.332 0.302 0.271 0.224

(0.054) (0.0424) (0.0375) (0.0504) (0.0449)
0.29 0.293 0.283 0.26 0.224

(0.0529) (0.0414) (0.032) (0.0382) (0.0441)
0.279 0.281 0.278 0.265 0.227

(0.0514) (0.0474) (0.0289) (0.0438) (0.0565)
0.259 0.259 0.258 0.246 0.207

(0.0397) (0.0481) (0.0357) (0.0402) (0.0512)
0.239 0.24 0.245 0.228 0.189

(0.0484) (0.0569) (0.0445) (0.0325) (0.0431)
0.237 0.237 0.24 0.222 0.179

(0.0456) (0.0635) (0.0421) (0.0385) (0.0495)
0.23 0.232 0.237 0.22 0.173

(0.0556) (0.0651) (0.0487) (0.0416) (0.0575)
0.214 0.209 0.216 0.197 0.154

(0.0381) (00555)_ (0.0509) (00407) (00641)

weeks unemployed by 1998

gender
gap

0.30

0.25

0.20

Figure 12: Variation in the gender gap along two variables: years in current region and years 

in marriage. All the other variables fixed at their medians. This is a more robust check of 

the dependence plots above. The White standard errors are reported in parentheses at each 

tile. Source: Author's calculations

Another such policy rule can be seen in the Figure 15 of the appendix, where I allow 

variation only along the marriage years and the history of residing in current region. It is 

important to emphasize, that in holding everything else equal, the median person in the 

sample lived in the South region and had less than high-school education, among other 

characteristics. Once again, I recover over 33% difference in wages between median 

men and women, who were in long term marriage and were new to the region. One 

can think of a support program designed to ease the adjustment of the newly-moved
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women with a marriage long history.

Furthermore, for binary indicators with more concentration over the support, sig­

nificant differences can be observed in the Figure 14 in appendix. It is clear that, 

controlling for everything else, married women experience 6 to 10% larger wage gap 

than singles. A magnitude of similar inequality 7 to 12% can be observed between 

women working in the services sector too.

6 Discussion

The results can be summarized in the following ways. First, I find the wages of 

men almost always higher than those of comparable women, coming from identical 

backgrounds. Second, I identify near-significant evidence that gender gap actually 

narrows with the experience (See Figure 11). Third, the gap is wider among public 

sector workers, and also among married women, controlling for everything else. Lastly, 

the gap is larger for individuals who had been unemployed less than 6 weeks before, 

and have a marriage history of more than 10 years. This may suggest that one can 

assign an audit of jobs and employee contracts among public sector workers, rather 

than a roll-out audit for everyone.

For long-term married women who are new to the region, the wage gap is also more 

pronounced, spanning over 33%. These findings can encourage targeting rules for 

eased mobility and integration of female workers into the particular region. These 

detailed results are relevant for individuals in the South region with less than highschool 

education, descriptive of a median person in the sample. However, it is possible to 

evaluate people in higher quantiles of the sample, and organize a policy relevant for them. 

This is possible because the counterfactuals I constructed using CF are doubly-robust 

in interpretation.

Although in my analysis I followed a more credible identification of the gender 

wage gap, and augmented the estimation of heterogenous effects with a doubly-robust 

estimator, there are limitations. The main limitation is the fact that I ignore the 

selection into labor market participation and focus on the subsample of workers who 

worked full-time at the time of the survey. The reason for that is that original authors 

find no significant evidence when using IV estimation with a child's age as an instrument 
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(Huber and Solovyeva 2020). Clearly, the analysis can be extended with an appropriate 

control strategy for selection into labor force.

Moreover, the data are cross-sectional, which only allows me to see a snapshot of 

people's experiences of wage gap. A better way to look at it is to exploit the time 

dimension, also capturing the evolution of the gap.

Third, the informativeness of the variables is somewhat limited for a specific policy 

rule. Hence my findings can be deemed less actionable, offering a very generic, descriptive 

image of the heterogeneity in gender wage discrimination. One could certainly recover 

heterogeneity in the gap using a richer set of confounders (e.g. including genetic factors). 

While the external validity of this analysis can be lacking, I nevertheless showcase the 

value-added of the Causal Forests in providing the tailored policy rules by exploring 

heterogeneity in gender wage gap.

7 Conclusion

In this thesis, my primary focus has been on estimating heterogeneity in gender bias 

using Causal Forests. I conducted an extensive literature review, addressing critical 

issues related to estimating treatment effects, such as selection bias, heterogeneity, and 

mediated effects. Additionally, I explored popular machine learning methods commonly 

employed by economists and their applicability in causal inference.

Building upon the study of Huber and Solovyeva (2020), I revisited their findings us­

ing a completely non-parametric and doubly-robust Causal Forest algorithm. I reported 

the results and also performed sensitivity checks, assessing the model's calibration to 

validate the heterogeneity estimates.

The partial dependence analysis indicated significant heterogeneity based on factors like 

marriage, regional history, unemployment, and public sector occupations. This suggests 

that older married men tend to earn significantly more than equally comparable women, 

while the difference diminishes for individuals with more extended periods of absence 

from the job market. This finding also sheds light on how married men and women 

recover differently after experiencing job loss. Also, I uncover that older married women 

can be at a significant disadvantage when newly moved to the region.

Although my results may not lead to actionable policy recommendations, the 
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heterogeneity analysis unmistakably reveals that, on average, men in the sample earned 

more than equally comparable women. The thesis aimed to demonstrate the value- 

added by employing causal machine learning, particularly Causal Forests, in addressing 

complex socio-economic phenomena. By estimating heterogeneity in the gender-wage 

gap and illustrating how the results can be visualized, this thesis serves as an example 

of utilizing gender bias variation for policy targeting. Through this work, I sought to 

contribute to the evolving literature of causal machine learning applications and also 

bridge the gap between traditional decomposition methods and the credible analysis of 

causal effects, thereby providing a clearer understanding of this critical issue.
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Appendix

Table 5: Average covariate values in each quantile

Covariates Bottom 20% 20%-40% 40%-60% 60%-80% Top 20%

married 0.397 0.693 0.853 0.962

(0.011) (0.011) (0.011) (0.011) (0.011)

yrs married 4.994 7.763 9.707 12.03
(0.132) (0.132) (0.132) (0.132) (0.132)

North East 0.163 0.154 0.151 0.112

(0.011) (0.011) (0.011) (0.011) (0.011)

North central 0.245 0.274 0.282 0.25

(0.013) (0.013) (0.013) (0.013) (0.013)

West 0.186 0.187 0.182 0.218
(0.012) (0.012) (0.012) (0.012) (0.012)

yrs in current region 15.47 15.24 14.92 14.27
(0.116) (0.116) (0.116) (0.116) (0.116)

SMSA 0.843 0.813 0.771 0.791
(0.012) (0.012) (0.012) (0.012) (0.012)

yrs in current SMSA 14.2 13.98 13.65 12.97
(0.132) (0.132) (0.132) (0.132) (0.132)

Degree highschool 0.466 0.43 0.428 0.363

(0.015) (0.015) (0.015) (0.015) (0.015)

some college 0.217 0.232 0.245 0.31

(0.013) (0.013) (0.013) (0.013) (0.013)

college or more 0.226 0.257 0.233 0.258
(0.013) (0.013) (0.013) (0.013) (0.013)

first job before 1975 0.057 0.05 0.059 0.061
(0.007) (0.007) (0.007) (0.007) (0.007)

first job in 1976-79 0.123 0.113 0.109 0.113
(0.01) (0.01) (0.01) (0.01) (0.01)
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Covariates Bottom 20% 20%-40% 40%-60% 60%-80% Top 20%

jobs ever changed

current tenure (weeks)

primary sector

transport

trade

finance

service, entertainment, business

proffesional services

public administration

yrs in current industry

Occupation: managerial

sales

clerical

service

farmer or laborer

(0.012) (0.012) (0.012) (0.012) (0.012)

11.01 10.89 9.871 9.649 8.764
(0.173) (0.173) (0.173) (0.173) (0.173)

291.7 301.1 329.8 299.4 255.4

(8.756) (8.756) (8.756) (8.76) (8.76)

0.202 0.187 0.163 0.164 0.123

(0.012) (0.012) (0.012) (0.012) (0.012)

0.111 0.113 0.097 0.072 0.07
(0.009) (0.009) (0.009) (0.009) (0.009)

0.14 0.122 0.144 0.156 0.149
(0.011) (0.011) (0.011) (0.011) (0.011)

0.053 0.059 0.076 0.047 0.064
(0.007) (0.007) (0.007) (0.007) (0.007)

0.136 0.122 0.12 0.122 0.121
(0.01) (0.01) (0.01) (0.01) (0.01)

0.214 0.216 0.208 0.233 0.274

(0.013) (0.013) (0.013) (0.013) (0.013)

0.051 0.056 0.052 0.073 0.083
(0.008) (0.008) (0.008) (0.008) (0.008)

4.386 4.019 4.276 3.389 2.401
(0.125) (0.125) (0.125) (0.125) (0.125)

0.236 0.26 0.299 0.306 0.33

(0.014) (0.014) (0.014) (0.014) (0.014)

0.06 0.086 0.08 0.083 0.086
(0.008) (0.008) (0.008) (0.008) (0.008)

0.151 0.16 0.126 0.145 0.167

(0.011) (0.011) (0.011) (0.011) (0.011)

0.148 0.103 0.109 0.137 0.162

(0.011) (0.011) (0.011) (0.011) (0.011)

0.231 0.172 0.182 0.156 0.125
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Covariates Bottom 20% 20%-40% 40%-60% 60%-80% Top 20%

machine operator 0.133 0.169 0.135 0.128 0.073
(0.01) (0.01) (0.01) (0.01) (0.01)

yrs in current occupation 2.814 2.511 2.373 2.092 1.79

(0.095) (0.095) (0.095) (0.095) (0.095)

worked full-time 0.872 0.886 0.89 0.85 0.819
(0.011) (0.011) (0.011) (0.011) (0.011)

weeks employed total 676.6 699.8 698.4 657.6 584.6
(5.995) (5.995) (5.995) (5.998) (5.998)

weeks unemployed total 83.19 53.86 43.91 44.6 26.72

(1.754) (1.754) (1.754) (1.755) (1.755)

bad health no work 0.007 0.007 0.005 0.003 0.009
(0.002) (0.002) (0.002) (0.002) (0.002)

yrs absent due to bad health since 1979 0.14 0.146 0.173 0.2 0.264
(0.019) (0.019) (0.019) (0.019) (0.019)
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0.30

Figure 13: Evaluating the variation in gender gap by quantiles of weeks spent unemployed as 

of 1998. All the other variables fixed at their medians, and hence this can be interpreted as 

ceteris paribus effect. The intervals are wide because not many observations were concentrated 

at or around the median values in the sample. Source: Author's calculations
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Figure 14: Evaluating the variation in gender gap by for binary variables of public service 

employment and marital status. All the other variables fixed at their medians, and hence 

this can be interpreted as ceteris paribus effect. The intervals are wide because not many 

observations were concentrated at or around the median values in the sample. Source: 

Author's calculations

not married
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Severity of the gap
all else fixed at the median

0 14 17 
years lived in current region

(0.364) 0.3
(0.0495)

0.279
(0.0414)

(0O0622) 0.297
(0.0631)
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(0.0372)

0.288
(0.0601)
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(0.0739)
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(0.0319)
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(0.0413)
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Figure 15: Variation in the gender gap along two variables: years lived in the current region 

and years in marriage. All the other variables fixed at their medians. This is a more robust 

check of the dependence plots above. The White standard errors are reported in parentheses 

at each tile. Source: Author's calculations
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