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1 Introduction

Classic models of sequential experimentation or learning typically involve a decision-maker (DM)

who explores a fixed set of alternatives with unknown characteristics. In many dynamic envi-

ronments, however, the set of feasible alternatives is expanded over time as the DM gathers

information about the alternatives already in her consideration set (CS).

In this paper, we study the tradeoff between exploring alternatives already in the CS and

expanding the CS through costly search. A key distinction between exploration and CS expansion

lies in their directness. The DM can “point to” and select a particular alternative within the CS

for exploration. In contrast, she cannot target specific alternatives outside the CS for inclusion

and evaluation. This inability may stem from inherent randomness in the search process, whereby

the alternatives discovered may differ from those the DM intended to find. Alternatively, search

may produce batched arrivals, and the expected composition of each batch may shape the DM’s

expansion decisions. Finally, the DM may be uncertain about the distribution of alternatives

outside the CS or the efficacy of the search process itself, and may update her beliefs about the

underlying search technology based on past outcomes.

To analyze the tradeoff between exploring alternatives already in the CS and expanding it,

we study a generalization of the classic multi-armed bandit problem in which the set of “arms”

is endogenous. Pulling an arm—i.e., exploring an alternative already in the CS—yields a flow

payoff and generates information about the arm’s characteristics, such as the distribution from

which payoffs are drawn. Uncertainty is resolved gradually, with each arm potentially requiring

repeated exploration before its attributes are fully revealed. Expanding the CS—i.e., engaging in

search—entails a cost and results in the arrival of a random set of new arms whose characteristics,

learned upon arrival, may depend on past search outcomes.

We show that the solution to the problem takes the form of an index policy. Each alternative

in the CS is assigned a history-dependent number—its index—which depends only on the state

of that alternative. This index coincides with the one introduced by Gittins and Jones’ (1974)

in the classic bandit problem with a fixed set of arms. In addition, the decision to expand the

consideration set (i.e., to search) is also assigned an index, which depends on the state of the

search technology. This state summarizes the outcomes of past searches and the DM’s beliefs

about the stochastic process governing the arrival of new alternatives. Crucially, the search index

is independent of the information generated by the exploration of any specific alternative already

in the CS. While distinct from the value the decision-maker attaches to expansion, the search

index is linked to the expected indexes of the alternatives that future searches may uncover. We

provide a recursive characterization of the search index and use it to derive many of our results.

The optimal policy prescribes choosing, in every period, the option—either an alternative in the

CS or search—with the highest index.
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Our environment can be viewed as a special case of the branching bandit problem studied

in the operations research literature, where activating certain arms causes them to disappear

and generates a set of new arms (see, e.g., Weiss, 1988, Weber, 1992, and Keller and Oldale,

2003). In our setting, the decision to expand the CS corresponds to activating a branching arm

that yields negative rewards (i.e., search costs) and brings a stochastic set of new alternatives,

drawn from a distribution that depends on past search outcomes. Our proof of indexability

departs from previous work by leveraging a novel recursive characterization of the search index.

This formulation facilitates computation and reveals key dynamic properties of the exploration-

expansion tradeoff with relevance for economic applications.

First, at any point in time, the decision to expand the CS depends on the current set only

through (i) the index of the alternative with the highest value, and (ii) the state of the search

technology. This is true even though the opportunity cost of search—that is, the value for-

gone by suspending exploration—depends on the entire history of exploration outcomes and

past expansions. Likewise, conditional on forgoing search, the decision of which alternative to

explore depends solely on each alternative’s individual state and is independent of the search

technology—even when newly discovered alternatives may resemble some current alternatives

more closely than others.

Second, if the search technology is stationary or improving (in a sense formalized below),

alternatives present at the time of expansion are never explored again. In effect, each search

replaces the current CS with a new one.

Third, when the search technology deteriorates—e.g., because the DM becomes pessimistic

about the likelihood of discovering valuable alternatives—the current set is not discarded but

put on hold. Alternatives may be revisited after the expansion, and the decision to expand is

made as if no further expansions will take place thereafter.

These properties can be viewed as generalizations of the classic independence of irrelevant

alternatives (IIA) property from multi-armed bandit problems. What sets the present setting

apart from the standard model enriched with a “meta” arm—representing the collection of al-

ternatives that search brings into the CS—is that evaluating such a meta arm requires solving a

nested dynamic problem. Specifically, doing so involves determining not only whether to activate

the arm but also how to explore the alternatives it yields over time and how to alternate between

exploring them and expanding the CS further. In other words, the selection of the meta search

arm also involves the choice of “how to use it” and not merely “for how long to use it”. Dynamic

problems of this kind, in which arms encapsulate future decision processes, seldom admit an

index solution. See also the discussion in Section 4.

The framework developed in this paper applies to a broad class of experimentation and se-

quential learning problems. As an illustrative application, we study the design of sequential

procurement mechanisms. In many settings, buyers face uncertainty not only about the quality
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and cost of goods or services, but also about the composition of the supplier pool. A salient ex-

ample is that of local municipalities that repeatedly procure infrastructure, waste management,

and other public services from a shifting set of vendors. These agencies expand their pool of po-

tential suppliers gradually over time—through advertising campaigns, public tenders, or requests

for proposals (RFPs)—each of which incurs administrative costs and generates a stochastic inflow

of new bidders. Suppliers’ costs are revealed at bidding, while service quality is learned through

repeated interaction. The key tradeoff faced by the buyer—between experimenting with known

suppliers and incurring costs to identify new ones—maps naturally into our multi-armed bandit

model with an endogenous CS.

We use the model to characterize the properties of the optimal procurement mechanism in

such environments. Assuming that each supplier’s cost of service provision is privately known,

we derive novel implications for the inefficiencies that arise in the solicitation process under profit

maximization—that is, when the DM seeks to maximize buyer surplus rather than total welfare.

On the positive side, we identify primitive conditions under which, following each expansion,

the buyer becomes more (or less) lenient toward incumbent suppliers—that is, more (or less)

willing to tolerate unsatisfactory performance before initiating further search. This translates

into a delay (or acceleration) in the expansion of the CS. We also show that, all else equal—that

is, fixing the number of competitors, their costs, and the history of experimentation—suppliers

who enter the mechanism at later stages earn higher profits than earlier entrants. In other words,

the mere delay in their discovery is good news for new entrants.

On the normative side, we show that all suppliers, regardless of type, contribute to inefficien-

cies in both solicitation and experimentation, albeit in systematically different ways. Specifically,

low-cost firms tend to induce inefficient delays in the expansion of the vendor pool, resulting in

excessive entrenchment with incumbents. Formally, these firms are tolerated through an ineffi-

ciently large number of unsatisfactory performances before the buyer initiates the search for new

suppliers. Conversely, high-cost firms lead to an inefficiently rapid expansion of the CS: they

are given too few chances to deliver satisfactory service before the solicitation of new firms. To

the best of our knowledge, these normative and positive implications are novel and, in principle,

open to empirical investigation.

Our framework accommodates general search (i.e., CS expansion) and exploration technolo-

gies. In particular, it allows for gradual resolution of uncertainty regarding the alternatives

already in the CS—following the classic structure in Gittins and Jones, 1974—as well as flexible,

history-dependent processes governing the discovery of new alternatives. This generality is es-

sential for capturing applications such as the sequential procurement setting discussed above, in

which each alternative must be explored over multiple periods, the DM alternates across multiple

options, and beliefs about the returns to CS expansion evolve endogenously based on prior search

outcomes.
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Outline. The rest of the paper is organized as follows. The remainder of this section reviews

the relevant literature. Section 2 presents the model. Section 3 characterizes the optimal policy

and highlights key properties of the dynamics of experimentation and CS expansion. Section 4

discusses indexability and considers generalizations beyond those captured in Section 2. Section

5 contains the application to procurement. Section 6 concludes. All proofs are contained in

the Appendix. Additional material is provided in an online Supplement. In particular, the

Supplement shows how the indexability result extends to certain decision problems in which the

DM, in addition to learning about existing alternatives and searching for new ones, can, or must,

irreversibly commit to an option, thus ending the exploration process. As an illustration, we

show how Theorem 1 and Proposition 1 can be used to solve an extension of Weitzman’s (1979)

Pandora’s box problem, in which the set of boxes is gradually constructed over time via a general

search technology.

1.1 Related literature

To the best of our knowledge, the problem analyzed in this paper—where the DM alternates

between exploring “arms” already in the CS and stochastically expanding the latter—is novel.

As noted above, this setup can be viewed as a special case of the branching problems studied

in the operations-research literature (see, e.g., Weiss, 1988, Weber, 1992, and Keller and Oldale,

2003). Our contribution includes a new proof of indexability, based on a novel recursive charac-

terization of the search (i.e., CS expansion) index. This characterization exploits a classification

of alternatives into “categories,”which summarize all features relevant to the dynamics of the CS

expansion technology. This recursive structure not only facilitates computation of the index but

also underpins the key results that follow.

This paper is also related to a large body of work on experimentation and sequential learning

with an exogenous choice set—see, for example, Weitzman (1979), Austen-Smith and Martinelli

(2018), Fudenberg, Strack and Strzalecki (2018), Gossner, Steiner and Stewart (2021), Ke and

Villas-Boas (2019), and Ke, Shen, and Villas-Boas (2016).1 In these papers, the DM acquires

costly information about a fixed set of alternatives before stopping and selecting one. Related

contributions include Che and Mierendorff (2019), who study optimal sequential allocation of at-

tention to two biased signal sources, and Liang, Mu, and Syrgkanis (2022), who analyze dynamic

information acquisition about an unknown Gaussian state. In all of these models, however, the

set of alternatives is fixed from the outset. By contrast, in our framework the DM endogenously

expands the choice set in response to accumulated information about existing alternatives. Also

related are Garfagnini and Strulovici (2016) and Carnehl and Schneider (2023). The former

1See also Bergemann and Välimäki (2008) for an overview of economic applications of multi-armed-bandit
problems.
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studies forward-looking experimentation with endogenous technologies, where trying “radically”

new technologies reduces the cost of experimenting with similar ones, effectively expanding the

set of affordable options. The latter examines the time-risk tradeoff faced by a DM who chooses

between implementing an existing method or developing a new one under a deadline. While

these papers also consider environments in which the choice set expands over time, both their

modeling approaches and substantive questions differ significantly from those in our analysis.

The application in Section 5 contributes to three strands of the literature: procurement,

“bandit auctions,” and bidder solicitation. The bandit auction literature has focused on environ-

ments where the set of bidders—that is, the CS—is fixed over time; see, for example, Bergemann

and Välimäki (2010), Kakade, Lobel, and Nazerzadeh (2013), Pavan, Segal, and Toikka (2014),

and Fershtman and Pavan (2017). In contrast, the auction literature on bidder solicitation has

considered static environments with a single solicitation decision, and has abstracted from ex-

perimentation—for recent contributions, see Lauermann and Wolinsky (2017), Lauermann and

Wolinsky (2025), and references therein. Our analysis contributes a novel angle to these three

literatures by allowing the designer to endogenously expand the pool of bidders over time, based

on the bids and experimentation outcomes of firms already participating in the mechanism.

The resulting dynamics uncover novel positive and normative insights bridging those in these

literatures.

The Pandora’s boxes problem, as introduced by Weitzman (1979), is a special case of the

multi-armed bandit framework characterized by the immediate resolution of uncertainty. In

this sense, it can be viewed as a particular instance of the broader class of bandit problems

with gradual learning, as studied by Gittins and Jones (1974). Despite its many applications,

the Pandora’s boxes framework has seen relatively few extensions in the literature. Notable

exceptions include Olszewski and Weber (2015), Choi and Smith (2016), and Doval (2018)—all

of which assume a fixed set of boxes. A related contribution in the marketing literature is

Greminger (2022), who examines a consumer search problem with an endogenous product set

(i.e., a dynamic set of boxes), focusing on the comparison between directed and undirected search

strategies.

Finally, this paper contributes to the rapidly growing literature on consideration sets (CS).

Eliaz and Spiegler (2011) examine how different (exogenously given) CS influence firm behav-

ior. By contrast, Manzini and Mariotti (2014) and Masatlioglu, Nakajima, and Ozbay (2012)

develop methods to infer CS from observed choice behavior. Caplin, Dean, and Leahy (2019)

provide necessary and sufficient conditions under which rationally inattentive agents optimally

limit attention to a subset of available options, thereby endogenizing the CS. Earlier, Simon

(1955) proposed a model of sequential search in which alternatives are evaluated until one meets

a satisfactory threshold, a behavior that Caplin, Dean, and Martin (2011) later showed to be

optimal under information costs. Our analysis complements this body of work by offering a dy-
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namic microfoundation for an endogenous CS. Rather than selecting a CS upfront and evaluating

its elements, the DM gradually expands the CS in response to the exploration outcomes of its

current members.

2 Model

In each period t = 0, 1, 2, ..., the DM chooses between exploring one of the alternatives in the

CS and expanding the latter by searching for additional alternatives. Exploring an alternative

generates information about it and yields a (possibly negative) flow payoff. Expanding the CS

yields a stochastic set of new alternatives, which are added to the CS and can be explored in

subsequent periods.

Consideration sets. Denote by Ct ≡ (0, ..., nt) the period-t CS, with nt ∈ N.2 Ct comprises all

alternatives i = 0, ..., nt that the DM can explore in period t, with the initial set C0 ≡ (0, ..., n0)

specified exogenously and with alternative 0 corresponding to the selection of the DM’s outside

option, yielding a payoff equal to zero. Given Ct, expansion of the CS in period t (that is, search)

brings a set of new alternatives Ct+1\Ct = (nt + 1, ..., nt+1) which are added to the current CS

and expand the latter from Ct to Ct+1.

Alternatives, categories, learning, and payoffs. Each alternative belongs to a fixed category

ξ ∈ Ξ that is observed by the DM when the alternative is brought to the CS, with the set Ξ

measurable but not necessarily finite. A category contains information about an alternative’s

experimentation technology and payoff process. Let µ ∈ R denote a fixed unknown parameter

about the alternative that the DM is learning about, with µ drawn from a distribution Γξ. When

the DM explores the alternative, she observes a signal realization about µ. Let m ∈ N index the

explorations of an alternative, and denote by ϑm−1 ≡ (ϑs)
m−1
s=0 ∈ Rm its history of past signal

realizations, with ϑm−1 ≡ ∅ for m = 0.3 When the DM explores the alternative for the m-th

time, she receives an additional signal ϑm about it, drawn from some distribution Gξ(ϑ
m−1;µ)

and updates her beliefs about µ using Bayes’ rule. Importantly, signal realizations are drawn

independently across alternatives, given the alternatives’ categories. The flow payoff u that the

DM obtains from exploring an alternative from category ξ with parameter µ for the m-th time

is drawn from a distribution Lξ(ϑ
m−1;µ).

The assumption that ξ is observable implies that the distribution Γξ from which µ is drawn

is known to the DM after the alternative’s category ξ is learned (which occurs at the time the

alternative is brought to the CS). Note, however, that the distribution Gξ(ϑ
m−1;µ) from which

the m-th signal ϑm is drawn, as well as the distribution Lξ(ϑ
m−1;µ) from which the m-th reward

is drawn, are not fully known to the DM because they depend on µ, which is unknown to the

2We adopt the convention of letting the set N include 0.
3We assume that µ and and ϑs are real numbers just for convenience; the results do no hinge on this assumption.

We also label the exploration by m = 0 to ease some of the formulas below.
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DM.

The search (i.e., CS expansion) technology. When the DM searches for the k-th time, she

incurs a cost ck and discovers alternatives of different categories. Let Ek = (nk(ξ) : ξ ∈ Ξ) denote

the complete description of the alternatives identified through the k-th search, with nk(ξ) ∈ N
representing the number of category-ξ alternatives discovered. Let (ck, Ek)

m−1
k=0 denote the history

of the past m − 1 search outcomes with (ck, Ek)
m−1
k=0 ≡ ∅ for m = 0. Given (ck, Ek)

m−1
k=0 , the m-

th search outcome (cm, Em) is drawn from a distribution J((ck, Ek)
m−1
k=0 ) that is independent of

calendar time. The dependence of J on the history of past search outcomes allows us to capture,

for example, learning about the effectiveness of search (e.g., about the number of potential firms

in the market, as in the application in Section 5), as well as changes in the DM’s ability to find

new alternatives (e.g., because of learning by doing and/or fatigue).

The classification of alternatives into categories allows us to keep track of all relevant infor-

mation about the evolution of the search technology. In particular, it allows each search outcome

(both the search cost and the set of new alternatives identified) to be drawn from a distribution

that depends on the composition of the CS while still permitting an index characterization of

the optimal policy. In an environment with an exogenous CS, categories play no role and one

can simply let each alternative belong to its own category. With an endogenous CS, instead,

categories permit us to identify common information among the alternatives in the CS that is

responsible for the outcomes of future searches.

Objective. A policy χ for the decision problem described above is a rule specifying, for each

period t, whether to experiment with one of the alternatives in the CS Ct or expand the latter

through search. A policy χ is optimal if, after each period t, it maximizes the expected discounted

sum Eχ [
∑∞

s=t δ
sUs|St] of the flow payoffs, where δ ∈ (0, 1) denotes the discount factor, Us denotes

the flow period-s payoff (with the latter equal to the search cost in case search is conducted in

period s), St denotes the state of the problem in period t (the latter specifies, for each alternative

in the CS, the history of signals, along with the history of all past search outcomes; see Section 3

for the formal definition) and Eχ [·|St] denotes the expectation under the endogenous process for

the flow payoffs obtained by starting from the state St and following the policy χ at each period

s ≥ t. To guarantee that the process of the expected payoffs is well behaved, we assume that,

for any t, any St and any χ, δtEχ [
∑∞

s=t δ
sUs|St] → 0 as t → ∞. This property is immediately

satisfied if payoffs and costs are uniformly bounded; its role is to guarantee that the solution to

the Bellman equation of the above dynamic program coincides with the true value function.

Remark. The model above describes an infinite-horizon experimentation problem (with en-

dogenous set of alternatives) in which payoffs are accumulated alongside learning. However, flow

payoffs and learning need not be intertwined. In Section 4 and in the Supplement we discuss

settings in which the DM sequentially decides between learning about alternatives in the CS and

expanding the CS, until a final choice is made among the alternatives in the CS, ending the
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decision problem. For example, Theorem 1 can be used to characterize the optimal policy in

a generalization of Weitzman’s Pandora’s boxes problem where the set of boxes is endogenized

through the DM’s search for new boxes. More generally, the results in Theorem 1 extend to a

broader family of problems where the DM needs to irreversibly stop learning in order to be able

to accumulate rewards; see Section 4 and the Supplement for further details.

3 Optimal policy and key implications

To facilitate the characterization of the optimal policy, we start by introducing the following

notation. Denote by θ a generic sequence of signal realizations about an alternative; that is, θ is

given by ϑm−1 ≡ (ϑs)
m−1
s=0 for some m. Denote by ωP = (ξ, θ) an alternative’s state, and by ΩP

the set of all possible states of an alternative.4 While the category ξ is fixed, the history θ of

past signal realizations changes over time as the result of the information the DM accumulates

about the alternative through past explorations. Similarly, the state of the search technology is

given by the history of past search outcomes, that is, ωS = (ck, Ek)
m
k=0 for some m. Denote the

set of the possible states of search by ΩS.

The state of the decision problem is given by the pair S ≡ (ωS,SP ), where SP is the state of

the current CS ; formally, SP : ΩP → N is a counting function that specifies for each possible state

of an alternative ωP ∈ ΩP , the number of alternatives in the CS in that state. Let Ω ≡ ΩP ∪ΩS

and note that ΩP ∩ ΩS = ∅. Denote by St the state of the decision problem at the beginning of

period t. This representation of the decision problem keeps track of all relevant information in a

parsimonious way and, as will become clear below, greatly facilitates the analysis.

Remark. The time-varying component θ of each alternative’s state ωP = (ξ, θ) admits inter-

pretations other than the signals about a fixed unknown parameter µ. In particular, all of our

results apply to a broader class of problems where θ evolves as the result of“shocks” that need not

reflect the accumulation of information. For example, such shocks may reflect endogenous vari-

ations in preferences, as in certain habit-formation or learning-by-doing models. Furthermore,

because no assumptions are made on the distributions Lξ(ϑ
m−1;µ) and Gξ(ϑ

m−1;µ) from which

the payoffs and the signals are drawn, the analysis accommodates for cases where payoffs them-

selves carry information, as well as cases where information arrives without any accompanying

rewards.

3.1 Optimal policy

We now characterize the optimal policy and discuss its implications for the dynamics of exper-

imentation and CS expansion. Recall that a policy χ for the decision problem above specifies,

4The initial state of each alternative from category ξ, before the DM explores it, is (ξ, ∅). The superscript P
in ωP is meant to highlight the fact that this is the state of a “physical” alternative in the CS, not the state of
the search technology, or the overall state of the decision problem, defined below.
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for each period t and each period-t state St, whether to experiment with one of the alternatives

in the CS or expand the latter through search. Clearly, because the entire decision problem is

time-homogeneous (independent of calendar time), so is the optimal policy. That is, for any two

periods t and t′ such that St = St′ , the decisions specified by the optimal policy for the two

periods are the same.

For each state ωP of an alternative, let

IP (ωP ) ≡ sup
τ>0

E
[∑τ−1

s=0 δ
sus|ωP

]
E
[∑τ−1

s=0 δ
s|ωP

] , (1)

denote the “index” of each alternative in the CS in state ωP . The definition in (1) is equivalent

to the one in Gittins and Jones (1974). The expectations in (1) are under the process obtained

by selecting the given alternative in all periods. The process τ in (1) is a stopping time (that

is, a rule prescribing when to stop, as a function of the observed signal realizations). The flow

payoff us in (1) is the one generated by the s-th exploration and, depending on the application,

can be either positive or negative. As is well known, the optimal stopping rule in the definition

of the index is the first period (after the one at which the index is computed) at which the index

falls weakly below the value at the time the index was computed (see, e.g., Mandelbaum, 1986).

Given each state S = (ωS,SP ) of the decision problem, let

I∗(SP ) ≡ maxωP∈{ω̂P∈ΩP :SP (ω̂P )>0}I(ωP ).

denote the maximal index among the alternatives within the CS.

We now define an index for search (i.e., expansion of the CS). Analogously to the indexes

defined above, the index for search is defined as the maximal expected average discounted net

payoff, per unit of expected discounted time, obtained between the current period and an optimal

stopping time. Contrary to the standard indexes, however, the maximization is not just over the

stopping time, but also over the rule governing the selection among the new alternatives brought

to the CS by the current and further searches as well as the decision of when to further expand

the CS. Denote by τ a stopping time, and by π a rule prescribing, for any period s between the

current one and the stopping time τ , either the selection of one of the new alternatives brought

to the CS by search or further search. Importantly, π selects only among search and alternatives

that are not already in the CS when the decision to search is made.5

5Suppose the index for search is computed in period t when the state of the search technology is ωS . Then,
for each period t < s < τ , π selects between further search and the selection of alternatives in the CS at period s
that were not in the CS in period t.
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Formally, given the state of the search technology ωS, the index for search is defined by

IS(ωS) ≡ sup
π,τ

Eπ
[∑τ−1

s=0 δ
sUs|ωS

]
Eπ

[∑τ−1
s=0 δ

s|ωS
] , (2)

where Us denotes the flow payoff from the s-th decision taken under the rule π (with this decision

taking the form of further search – in which case Us is the stochastic cost of search – or exploration

of one of the alternatives brought to the CS by searches following the one for which the index

is computed, in which case Us is the stochastic payoff associated with the exploration of the

alternative), and where the expectations are under the process generated by the rule π.

Definition 1 (Index policy). The index policy χ∗ selects at each period t the option with the

greatest index given the overall state St = (ωS,SP ) of the decision problem: search if IS(ωS) ≥
I∗(SP ), and an arbitrary alternative with index I∗(SP ) if IS(ωS) < I∗(SP ).

Ties between alternatives are broken arbitrarily. In order to maintain consistency throughout

the analysis, we assume that, when IS(ωS) = I∗(SP ), search is carried out. To characterize the

optimal policy, we first introduce the following notation. For any v ∈ R, let κ(v) ∈ N ∪ {∞}
denote the first time at which, when the DM follows the index policy χ∗, (a) the search technology

reaches a state in which its index is no greater than v, and (b) all alternatives in the CS –

regardless of when they were introduced into it – have an index no greater than v. That is, κ(v)

is the minimal number of periods until all indexes are weakly below v (κ(v) = ∞ if this event

never occurs).6

Let V∗(S0) ≡ (1− δ) supχ Eχ [
∑∞

t=0 δ
tUt|S0] denote the supremum expected per-period payoff

the DM can attain across all feasible policies χ, given the initial state S0.

Theorem 1 (Optimal policy).

1. The index policy χ∗ is optimal in the sequential experimentation problem with endogenous

CS described above.

2. The index for search (i.e., CS expansion), as defined in (2), satisfies the following recursive

characterization. For any ωS ∈ ΩS,

IS(ωS) =
Eχ∗

[∑τ∗−1
s=0 δsUs|ωS

]
Eχ∗

[∑τ∗−1
s=0 δs|ωS

] , (3)

where τ ∗ is the first time (strictly after the one at which the index is computed) at which IS

and the indexes of all the alternatives brought to the CS by the current and future searches

6Note that between the current period and the first period at which all indexes are weakly below v, if the DM
searches, new alternatives are added to the CS, in which case the evolution of their indexes is also taken into
account in the calculation of κ(v).
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fall weakly below the value IS(ωS) of the search index at the time the latter is computed,

and where all the expectations are under the process induced by the index policy χ∗.

3. The DM’s expected (per-period) payoff under the index policy χ∗ is equal to∫ ∞

0

(
1− Eχ∗

[
δκ(v)|S0

])
dv. (4)

As in the classic multi-armed bandit problem with an exogenous CS, independence across

alternatives is the key assumption behind the optimality of the index policy. That is, the payoffs

(and the signals) from the various alternatives are drawn independently across the alternatives,

given the latter’s categories, and the set of new alternatives brought to the CS at each expansion

is invariant in the signals generated by the past explorations of the individual alternatives in

the CS. Under such assumptions, the theorem establishes a generalization of the index Theorem,

according to which selecting in each period the alternative, or search, with the highest index is

optimal.

Part (2) characterizes the stopping time in the index of search by exploiting its recursive

formulation. It uses the fact that the rule (for the selection of the alternatives brought to the

CS by current and future searches and for the timing of future CS expansions) maximizing the

expected payoff per unit of expected discounted time starting from the state ωS is itself an index

rule. This implies that the optimal stopping in the definition of the search index, starting from ωS,

occurs the first moment at which the index of each new alternative brought to the CS by current

and future searches as well as the value of the search index itself fall weakly below the value of

the search index IS(ωS) at the time the latter is computed (i.e., before launching the current

search, starting from ωS). Such a recursive representation, the validity of which we establish in

the proof of Theorem 1 in the Appendix, facilitates an explicit characterization of the index in

applications, and permits us to identify various properties of the dynamics of experimentation

and CS expansion that are useful in applications and for our proof of indexability.

Finally, Part (3) offers a convenient representation of the DM’s payoff under the optimal rule

that can be used, among other things, to determine the DM’s willingness to pay for changes in

the search technology with limited knowledge about the details of the environment (see also the

discussion in the next subsection). Because all indexes represent expected payoffs per expected

discounted unit of time, the integral (over all values v) of the time it takes for all indexes to

fall below v is a concise statistic of all the signal and reward processes responsible for the DM’s

payoff under the optimal rule.

3.2 Implications for dynamics of exploration and CS expansion

We first describe a few properties that the search technology may satisfy.
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Definition 2 (Search technology). (i) A search technology is stationary if , given any two

states of the search technology ωS = (cj, Ej)
m
j=0 and ω̂S = (ĉj, Êj)

m̂
j=0, J(ω

S) = J(ω̂S). (ii) A

search technology is deteriorating if, given any state ωS = (cj, Ej)
m
j=0 and subsequent state

ω̂S =
(
(cj, Ej)

m
j=0, (cj, Ej)

m+s
j=m+1

)
, m, s ∈ N, the distribution J(ωS) first-order stochastically dom-

inates the distribution J(ω̂S). (iii) A search technology is improving if, for any state ωS and

subsequent state ω̂S, as defined in Part (ii), J(ω̂S) first-order stochastically dominates J(ωS).7

The next result uses the recursive characterization in Theorem 1 to identify various properties

of the dynamics of exploration and CS expansion, which are useful in applications.

Proposition 1 (Dynamics of exploration and CS expansion).

1. Invariance of expansion to CS composition: At any period, the decision to expand

the CS depends on the state S = (ωS,SP ) of the system only through the value I∗(SP ) of

the alternative with the highest index, and the state ωS of the search technology.

2. Independence of irrelevant alternatives: At any period t, for any pair of alternatives

i, j ∈ Ct with i ̸= j, the choice between exploring alternative i or exploring alternative j is

invariant to the period-t state ωS of the search technology.

3. Possible irrelevance of improvements in search technology: An improvement in

the search technology increasing the probability of finding alternatives of positive expected

value (vis-a-vis the outside option) need not affect the decision to expand the CS even at

histories at which, prior to the improvement, the DM is indifferent between expanding the

CS and exploring one of the alternatives already in it.

4. Stationary value function: If the search technology is stationary, for any two states S,
S ′

at which the DM expands the CS, V∗(S) = V∗(S ′
).

5. Stationary replacement: If the search technology is stationary or improving and search

is carried out at period t, without loss of optimality, the DM never comes back to any

alternative in the CS at period t.

6. Single search ahead: If the search technology is stationary or deteriorating, at any

history, the decision to expand the CS is the same as in a fictitious environment in which

the DM expects she will have only one further opportunity to search.

7That is, the search technology is deteriorating if, regardless of the outcome of past searches, for any k and
any upper set A ⊂ R × N|Ξ| (that is, any set A ⊂ R × N|Ξ| such that for each a1, a2 ∈ R × N|Ξ| with a2 ≥ a1,
a2 ∈ A if a1 ∈ A), one has that Pr((−ck+1, Ek+1) ∈ A) ≤ Pr((−ck, Ek) ∈ A). This definition is quite strong. In
more specific environments, where there is an order on the set of categories Ξ, weaker definitions are consistent
with the results below.
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7. Pricing formula: Consider two states S0 = (SP , ωS) and Ŝ0 = (SP , ω̂S) that differ only

in terms of the state of the search technology. The DM’s willingness-to-pay to change the

state of the search technology from ωS to ω̂S is equal to

P∗(SP , ωS , ω̂S) =

∫ ∞

0

(
E
[
δκ(v)|(SP , ω̂S)

]
− E

[
δκ(v)|(SP , ωS)

])
dv.

Part (1) of the proposition is an implication of Theorem 1. The result is not trivial because

the opportunity cost of expanding the CS (i.e., the value of continuing with the current CS)

typically depends on the entire state S of the problem, beyond the information contained in

I∗(SP ) and ωS.

Part (2) also follows from Theorem 1. Starting with each period t, the relative amount of

time the DM spends on each pair of alternatives in the period-t CS is invariant to the type of

alternatives the DM expects to find by expanding the CS. This is true despite the fact that

further expansions of the CS may bring alternatives that are more similar to one alternative than

the other.

Part (3) follows from the fact that improvements in the search technology need not imply

an increase in the index of search. This is because, as shown in Part (2) of Theorem 1, the

optimal stopping time in the index of search is the first time at which the index of search and

the indexes of all alternatives brought to the CS by the current and future searches fall weakly

below the value of the search index at the time the current search is launched. As a result, any

improvement in the search technology affecting only those alternatives whose index at the time

of arrival is below the value of the search index at the time search is launched does not affect

the value of the search index, and hence the decision to expand the CS. This is true even if these

alternatives are explored with positive probability under the optimal rule.

Part (4) of the proposition says that, when the search technology is stationary, the continua-

tion value when search is launched is invariant to the state of the system S at the time search is

launched. This follows from the fact that, without loss of optimality, the DM never comes back

to any alternative in the CS after search is launched and the outcome of any future search is

invariant in S.
For Part (5), note that, because the state of an alternative changes only when the DM selects

it, if, in period t, IS(ωS) ≥ I∗(SP ), under a stationary or improving search technology, the same

inequality remains true in all subsequent periods. Hence, in this case, search corresponds to

disposal of all alternatives in the current CS. Each time the DM searches, she starts fresh.

Part (6) follows again from the recursive characterization of the stopping time in the index

of search, as per Part (2) of Theorem 1. Recall that this time coincides with the first time at

which the index of any physical alternative brought to the CS by the current or future searches,

and the index of search itself, drop weakly below the value of the search index at the time the
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current search is launched. If the search technology is stationary, or deteriorating, the index of

search falls (weakly) below its current value immediately after search is launched. Hence, IS(ωS)

is invariant to the outcome of any search following the current one, conditional on ωS.

Part (7) follows from Part (3) in Theorem 1, and can be used to price changes in the search

technology, with limited knowledge about the details of the environment. To see this, suppose

that the econometrician, the analyst, or a search engine, have enough data about the average

time it takes for an agent with an exogenous outside option equal to v ∈ R+ to exit and take the

outside option, under different search technologies. Then by integrating over the relevant values

of the outside option one can compute the maximal price P∗(SP , ωS, ω̂S) that the DM is willing

to pay to change the state of the search technology from ωS to ω̂S.

4 Discussion

Indexability and “meta-arms.” Indexability of the optimal policy is not obvious in our setting

because search acts as a meta-arm—an action that opens up multiple downstream possibilities

(over and above the length of utilization). Specifically, choosing to search not only involves

selecting an arm but also specifying how to use it—whether to explore one of the physical

alternatives it brings into the CS or to continue searching. While our results establish that

search can effectively be treated as a meta-arm endowed with its own index, this outcome is not

a priori guaranteed. Indeed, in many problems where actions correspond to meta-arms—that

is, subproblems with their own internal decisions (sometimes called super-processes)—an index

solution generally does not exist, even when subproblems are independent and their solutions

known. Similarly, correlation or dependence among alternatives often precludes indexability,

even when subsets evolve independently of one another and optimal within-subset decision rules

are known.

To see why multi-armed bandit problems in which alternatives take the form of meta-arms

typically do not admit an index solution, consider the following extension of the environment

described in Section 2. Suppose there are k ∈ N distinct sets of arms, K1, ..., Kk. Arms in

different sets evolve independently, but arms within a given set may have interdependent states.

More generally, suppose each arm is a meta-arm: activating it triggers a distinct decision process

that involves not just timing (i.e., when to stop), but also how to act across multiple stages.

Assume that each meta-arm evolves independently of the others and that the optimal decision

rule for each meta-arm can be computed in isolation.

It might then be tempting to conjecture that one could assign an independent index to each

meta-arm (or to each arm set Ki) and solve the overall problem via an index policy—that is, by

selecting the meta-arm with the highest index in each period. However, this intuition fails. Even

when arms (or sets of arms) are independent in the standard probabilistic sense, the internal

complexity of the decision process within each meta-arm can prevent the existence of a global
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index policy. In other words, independence across meta-arms is not sufficient for indexability

when the arms themselves are structured decision problems. The following example illustrates

this failure.

Example. There are two arms. Arm 1 yields a reward of 1,000 when pulled for the first time.

In all subsequent pulls, it yields a reward of λ, where λ ∈ {1, 10} is initially unknown and drawn

with equal probability. The value of λ is revealed with certainty after the first pull and remains

fixed thereafter.

Arm 2 is a meta-arm that corresponds to a sub-decision problem. When this arm is pulled

for the first time, the DM must also choose one of two modes of operation:

• 2(A): The arm yields a reward of 100 for one period only, and then becomes inactive (i.e.,

no rewards thereafter).

• 2(B): The arm yields a reward of 11 in each period it is pulled, indefinitely.

Crucially, the choice between 2(A) and 2(B) must be made upon the first activation of Arm 2

and is irreversible.

Assume a discount factor δ = 0.9. The optimal policy is as follows:

• In period 1, pull Arm 1.

• If λ = 10, then pull Arm 2 in version 2(A) for one period (yielding 100), and revert to Arm

1 in all subsequent periods.

• If λ = 1, then switch to Arm 2 in version 2(B) and continue pulling it indefinitely.

This strategy is optimal but clearly not implementable via an index policy. Under an index

policy, each arm is assigned a numerical index that is independent of the state or outcome of

other arms, and the highest-indexed arm is pulled in each period. In this example, however,

the optimal choice of how to use Arm 2—whether to activate it in mode 2(A) or 2(B)—depends

on the outcome of Arm 1’s first pull. Thus, the optimal utilization of one arm is contingent on

information obtained from another, violating the separability required for indexability.

This example illustrates the broader point: when arms are meta-arms with internal decision

processes, even full independence across arms and knowledge of the optimal utilization of each

meta-arm in isolation are not sufficient to guarantee that the optimal policy for the entire problem

takes the form of an index rule.

Stopping and irreversible choice. In many decision problems, the DM faces not only the

task of learning about existing options and searching for new ones, but also the possibility—or

necessity—of irreversibly committing to one of the alternatives, thereby ending the exploration

process. In general, such problems do not admit an index solution. In the Supplement, we

provide a sufficient condition under which the optimality of an index policy extends to these
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settings. Specifically, we assume that each alternative of category ξ must be explored at least

Mξ ≥ 0 times before the DM is allowed to commit to it. For instance, a hiring committee may

need to collect a minimum number of positive signals about a candidate’s qualifications before

making an offer, or a consumer might need to visit a vendor’s website at least once to complete

a transaction.

The sufficient condition ensures that, once an alternative reaches a state in which commit-

ment is feasible, its retirement value—i.e., the value of irreversibly selecting it—either (i) falls

below the value of the outside option (e.g., when a candidate is revealed to be unqualified), or

(ii) increases (weakly) with additional exploration. This property is reminiscent of a condition

identified in Glazebrook (1979), who establishes the optimality of index policies in a class of ban-

dit problems with stoppable processes. Our proof, however, differs in that it explicitly accounts

for the endogenous evolution of the set of alternatives over time.

A special case of the problem described above arises when exploring an alternative reveals its

value immediately. In this case, the setting reduces to the well-known Pandora’s boxes problem,

but with an endogenous (time-varying) set of boxes. We now show how the results from Theorem

1 and Proposition 1 can be used to solve an extension of Weitzman’s problem in which the set

of boxes evolves over time in response to the outcomes of past explorations. In this extended

problem, each alternative corresponds to a“box” that belongs to a category ξ ∈ Ξ. Each category

ξ is associated with a pair (F ξ, λξ), where F ξ is the distribution from which the box’s prize v

is drawn, and λξ is the cost of inspecting (i.e., opening) the box. As in Weitzman’s original

formulation, each box’s prize v is drawn independently (conditional on the category) and is

revealed upon first inspection.

At each period, the DM can choose one of three actions: (a) search for additional boxes to

add to the current CS; (b) open one of the boxes already in the CS to reveal its prize; or (c) stop

and either recall the prize from one of the previously opened boxes or take the outside option

(whose value is normalized to zero). Either choice in (c) brings the decision process to an end.

For simplicity, assume that each search yields exactly one new box. The category ξ of the

box is drawn from the set Ξ according to a distribution ρ(m) ∈ ∆(Ξ), which may vary with the

number of past searches but is independent of the realizations of those searches. The draws from

the distributions ρ(m) are independent across searches.8

We assume that Ξ ⊂ N, with higher ξ denoting superior boxes, in the sense that, for any

ξ′, ξ′′ ∈ Ξ with ξ′′ > ξ′, F ξ′′ ⪰FOSD F ξ′ and λξ′′ ≤ λξ′ (with one of the two relationships strict).

Let ξ ≡ inf Ξ and ξ ≡ supΞ. The cost of the m-th expansion of the CS is c(m), where c(·) is a
8Note that, even though each search yields exactly one new arm, the problem cannot be reduced to a standard

multi-armed bandit formulation by treating each search as the first pull of a newly arrived arm. The key reason
is that the outcome of this initial “pull” depends on the number of arms previously explored, thereby violating a
central condition for indexability in the standard bandit framework—namely, that the evolution of each arm be
independent of the history of other arms.
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positive and increasing function. In addition, we assume that, for all m, ρ(m) ⪰FOSD ρ(m+ 1);

that is, the distribution ρ(m) ∈ ∆(Ξ) from which the category of the m-th box is drawn first-

order-stochastically dominates, weakly, the distribution ρ(m+1) ∈ ∆(Ξ) from which the category

of the (m+1)-th box is drawn. The combination of the assumption that c(m) is weakly increasing

in m and the distribution ρ(m) ∈ ∆(Ξ) from which the boxes are drawn “decreases” with m in a

FOSD sense implies that the index of search IS(m) defined below is decreasing in m and can be

characterized using the same recursive properties as when the search technology deteriorates in

the sense of Definition 2 (as per Part (6) of Proposition 1). We denote by ρξ(m) the probability

that the m-th search brings a ξ-box, with
∑

ξ∈Ξ ρ
ξ(m) = 1 for all m.9

As in the baseline model, the DM discounts the future at rate δ.

The setting described above is one in which the DM’s problem terminates upon choosing to

walk away with the prize from an opened box or the outside option. By contrast, the framework

in Section 2 features an infinite horizon, with the DM continuously choosing among evolving

alternatives. Despite this distinction, the optimal solution to the box problem takes the form of

an index policy closely related to the one in Definition 1 (see Proposition S.1 and its proof in the

Supplement).

The key intuition is that the Pandora’s boxes problem with an endogenously expanding set of

boxes can be mapped into an auxiliary problem that conforms to the general structure analyzed

in Section 1. Theorem 1 and Proposition 1 can then be applied to characterize the structure of

the optimal policy, which we describe next.

For any ξ-box that has not been opened yet (i.e., for which ωP = (ξ, ∅)) let the reservation

prize IP (ξ, ∅) be given by the solution to:

IP (ξ, ∅) =
−λξ + δ

∫∞
IP (ξ,∅)

1−δ

vdF ξ(v)

1 + δ
1−δ

(
1− F ξ

(
IP (ξ,∅)
1−δ

)) . (5)

For any l ∈ R, let Ξ(l) ≡
{
ξ ∈ Ξ : IP (ξ, ∅) > l

}
denote the set of boxes whose reservation

prize exceeds l. For any m, the reservation prize of search IS(m) is given by the solution to:10

IS(m) =

−c(m) + δ
∑

ξ∈Ξ(IS(m)) ρ
ξ(m)

(
−λξ + δ

∫∞
IS(m)
1−δ

vdF ξ(v)

)
1 +

∑
ξ∈Ξ(IS(m)) ρ

ξ(m)
[
δ + δ2

1−δ

(
1− F ξ

(
IS(m)
1−δ

))] . (6)

The solution to the Pandora’s boxes problem with an endogenously evolving CS takes the fol-

lowing form. If the highest reservation prize among all unopened boxes in the CS exceeds both

the reservation prize of search, IS(m), and the flow value (1− δ)v of each opened box (as well as

9All the results extend to the case where Ξ is infinite.
10Because all the relevant information about the state of the search technology is summarized in the number

of past searches, we abuse notation and let IS(m) denote the index for the m-th search.
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the value of the outside option), then the DM opens one of the unopened boxes with the highest

reservation prize. If, instead, the reservation prize of search IS(m) exceeds the reservation prize

IP (ξ, ∅) of every unopened box, the flow value (1 − δ)v of each opened box, and the outside

option, then the DM chooses to search. If neither of these two cases applies, the DM stops. In

that event, she selects the opened box whose flow value (1 − δ)v is highest, provided it exceeds

the outside option; otherwise, she takes the outside option.

As in Weitzman’s problem, the reservation prizes IP (ξ, ∅) of the boxes that have not been

opened yet have the following interpretation.11 Suppose there are only two alternatives: one is

an unopened ξ-box, and the other is a hypothetical box yielding a constant flow payoff K per

period. Then, IP (ξ, ∅) is the value of K for which the DM is indifferent between choosing the

hypothetical annuity (with continuation value K/(1 − δ)) and inspecting the unopened ξ-box

while retaining the option to recall the annuity after observing the realized prize v.

The reservation prize of search, IS(m), extends this logic. Consider again two options: the

hypothetical annuity yielding known K, and the opportunity to search for a new box. The

reservation prize of search is the value of K for which the DM is indifferent between taking

the annuity immediately and performing one additional search, retaining the option to take the

annuity later either:

(a) immediately after discovering the category ξ of the newly found box, if IP (ξ, ∅) ≤ K, or

(b) after inspecting the box—if IP (ξ, ∅) > K—in the event that the realized prize v ≤
K/(1− δ).

See the Supplement for a more general treatment of irreversible problems with an endogenous

set of alternatives for which the optimal policy is indexable.

Relative length of expansion. To incorporate frictions in the search for new alternatives,

we assume that each time the DM searches, she forgoes the opportunity to explore any of the

alternatives currently in the CS, with search requiring the same amount of time as a single explo-

ration. All our results extend to environments in which the duration of search and exploration

varies stochastically with the state. Specifically, they generalize to semi-Markov settings where

time is not slotted into discrete periods, and decision times are modeled as random variables.

In such a setting, the time required to “pull an arm” can be stochastic, heterogeneous across

arms, and different from the time needed to expand the CS. Similarly, the time required for each

search may depend on the outcomes of previous searches. These durations must therefore be

incorporated into the state variables: for explorations, into each arm’s state ωP ; for search, into

the state of the search technology ωS.

Moreover, because the time cost of search can be made arbitrarily small through appropriate

11Weitzman defines the reservation prize ÎP (ωP ) for ωP = (ξ, ∅) as the solution to λξ = δ
∫∞
ÎP (ωP )

(v −
ÎP (ωP ))dF ξ(v)− (1− δ)ÎP (ωP ), which yields
ÎP (ωP ) = [−λξ + δ

∫∞
ÎP (ωP )

vdF ξ(v)]/[1 − F ξ(ÎP (ωP ))]. The reservation prizes in (5) are thus equal to those

in Weitzman (1979) multiplied by (1− δ); that is, IP (ωP ) = (1− δ)ÎP (ωP ).
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rescaling of payoffs and adjustment of the discount factor, the framework also accommodates

environments in which search and learning proceed almost in parallel. That is, our results

continue to apply even when search causes only negligible delays in the exploration of existing

alternatives so that search and learning occur “almost” in parallel.

No discounting. The results above assume that δ < 1. However, they extend to δ = 1 (i.e.,

no discounting). As noted in Olszewski and Weber (2015), bandit problems in which δ = 1 can

be thought of as problems with non-discounted “target processes” where arms reaching a certain

(target) state stop delivering payoffs. A well-known result for such problems is that the finiteness

they impose allows one to take the limit as δ → 1 (see e.g., Dumitriu, Tetali, and Winkler, 2003).

General “states” and multiple search options. The general model presented in Section 2

is highly flexible. As noted earlier, the results in Theorem 1 and Proposition 1 also apply to

environments in which the state of each alternative evolves due to factors beyond information

acquisition—for instance, through exogenous shocks such as firms improving their products over

time. Moreover, the framework accommodates settings in which the DM has access to multiple

search opportunities and can choose where and how to expand the CS. The results in Theorem

1 and Proposition 1 extend to such settings provided that each “search arm” brings forth a set

of alternatives independently of all other search arms.

The results also extend to settings in which search arms function as “meta-arms” that do not

directly introduce new alternatives, but instead reveal information relevant to an entire group

of alternatives—information that is independent of that revealed by other meta-arms for other

groups. The proof proceeds along lines similar to those used in establishing Theorem 1. The

parallel with the case of multiple independent search arms becomes evident when interpreting

the information shared across a group of alternatives as a category, following the classification

introduced in Section 2. Under this interpretation, the problem corresponds to one in which

the CS is initially empty, and each independent meta-arm, when activated, yields a fixed set of

alternatives that share a common category, which is revealed at the time of activation.

5 Application: Experimentation and Solicitation in Sequential Procurement

Auctions

In many procurement settings, buyers face uncertainty not only about the quality and cost of

services offered by different suppliers but also about the set of firms in the market that could

potentially provide those services. For instance, municipalities and other public agencies regularly

procure goods, infrastructure, and services from private companies to meet public needs. These

agencies engage in repeated procurement from multiple vendors while also investing in advertising

and other solicitation efforts to identify new potential suppliers. The uncertainty surrounding

such campaigns arises from limited knowledge about how many firms are active in the market,
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whether their services meet the required standards, and the cost of procuring from them.

In this section, we show how the procurement problem—with a set of suppliers endogenously

built over time—naturally maps into our model. We then use Theorem 1 and Proposition 1 to

analyze the properties of the optimal mechanism.

We assume that each supplier’s unit cost of providing the service is privately known to the

supplier. This assumption allows us, among other things, to derive novel predictions about

the dynamics of inefficiencies in bidder solicitation under profit maximization (i.e., when the

designer maximizes buyer surplus rather than total welfare). While, under the optimal mecha-

nism, suppliers’ costs are revealed through bidding when they join the mechanism, the quality of

each supplier’s service is learned by the buyer gradually through experimentation (i.e., through

repeated purchases).

In addition to the procurement literature, the analysis contributes to the “bandit auctions”

literature by endogenizing the set of bidders, and to the recent literature on bidder solicitation

in auctions by incorporating dynamics in which solicitation efforts depend on the outcomes of

past campaigns and the performance of previously contracted firms.

While the analysis is motivated by the procurement of goods and services by municipalities,

the results apply more broadly to both public and private procurement problems, as well as to

the design of screening mechanisms with an endogenous set of agents.

5.1 Environment

A buyer repeatedly procures services from firms that have joined the procurement mecha-

nism—that is, firms that are part of the consideration set (CS). Initially, the CS is empty.

In each period, the buyer can either search for new firms (e.g., by conducting an advertising

campaign or hiring a consultant to solicit bids), or procure from one of the firms already in the

CS.

The buyer does not know how many firms are in the market for the desired service. Let

N ∈ N denote this number. The buyer initially believes that N is drawn from a distribution

with cumulative distribution function (cdf) F and probability density function (pdf) f . That is,

for any N ∈ N, f(N) represents the buyer’s belief about the probability that there are exactly

N firms in the market that could potentially be brought into the procurement mechanism.

Whenever the buyer searches for new suppliers, she identifies each firm in the market that

has not yet been identified with probability ρ ∈ (0, 1). In other words, if there are N firms in

the market and n ≤ N have already been identified, then the probability that the m-th search

yields k ∈ {0, N − n} new firms is given by

b(k;N, n, ρ) ≡
(
N − n

k

)
ρk(1− ρ)N−n−k. (7)
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Conditional on N , the number of new firms brought into the procurement mechanism as a result

of the m-th search depends on the outcomes of past searches only through the total number n

of firms identified thus far.

For simplicity, assume that each search entails no direct monetary cost to the buyer, aside

from the opportunity cost of pausing procurement for one period.12 Given that n firms have

been identified through past searches, the buyer updates her belief about the remaining number

of firms in the market, N − n, accordingly.

Each firm incurs a unit cost c each time it supplies its service to the buyer. The service

is assumed to be indivisible and can be supplied an unlimited number of times. Each firm’s

cost c is drawn from a cumulative distribution function G with strictly positive density g over

the interval [c, c̄]. Costs are drawn independently across firms and are independent of all other

random variables in the model. Each firm’s cost is constant over time and privately known to

the firm. We assume that the function G/g is increasing, and we define the “virtual cost” of a

firm with true cost c as γ(c) ≡ c+G(c)/g(c).

The buyer does not initially know the quality of any firm’s service—formally captured by

the distribution from which the buyer’s flow payoff is drawn—and gradually learns about each

firm’s quality through experimentation. Firms, in turn, are also unaware of the buyer’s valuation

for their services. To keep the analysis tractable, we assume that service quality is binary. Let

µ ∈ {µ, µ} denote a firm’s quality, where µ corresponds to high quality and µ to low quality.

Each firm’s quality is drawn independently across firms and independently from all other random

variables in the model. Let p denote the ex-ante probability that a firm’s quality is high, i.e.,

Pr(µ̃ = µ) = p.13

Each time the buyer procures the service from a firm, she receives a signal ϑ ∈ {0, 1} about

the firm’s quality. For simplicity, we assume that these signals coincide with the buyer’s flow

payoffs. Specifically, for any m ∈ N, the probability the m-th signal is equal to 1 is given by

Pr(ϑ̃m = 1|µ̃ = µ) = 0, whereas Pr(ϑ̃m = 1|µ̃ = µ) = q ∈ (0, 1). That is, a low-quality

firm never generates a positive signal (equivalently, a satisfactory service), while a high-quality

firm does so with probability q. Signals are drawn independently across time and across firms,

conditional on firm quality. In other words, the experimentation process follows the “no news

is bad news” (NNBN) framework commonly used in the literature, where “news” corresponds to

“satisfactory experiences”or, equivalently, “successes.”We note that most of the results presented

below generalize to other signal structures, as we will explain in due course.

Let ū(ϑm−1) denote the buyer’s expected flow payoff (gross of any payments) from procuring

for the m-th time from a firm with signal history ϑm−1 ≡ (ϑs)
m−1
s=0 . When ϑm−1 is such that ϑl = 1

for some l ≤ m− 1, ū(ϑm−1) = q. When, instead, ϑm−1 is such that ϑl = 0 for all l ≤ m− 1, or

12This assumption is made solely for expositional convenience and does not play a critical role in the results
that follow.

13We use tildes to denote random variables.

21



m = 0 (in which case ϑm−1 = ∅),

ū(ϑm−1) = q · p(1− q)m

p(1− q)m + 1− p
,

where p(1 − q)m/[p(1 − q)m + 1 − p] is the posterior probability that the quality of the firm’s

service is µ given that the firm never delivered a satisfactory service in the past.

5.2 Profit- and Welfare-Maximizing Mechanisms

Whenever the buyer identifies a new firm, she invites it to join the procurement mechanism and

submit a bid. This bid determines the payment the buyer will make to the firm each time its

service is procured. Additionally, the buyer commits to paying a lump-sum transfer T to the firm

upon joining the mechanism, where T depends on the firm’s bid (details follow). This transfer

remains fixed regardless of the firm’s subsequent utilization. Firms identified in period t submit

their bids at the end of that period.

To facilitate the mapping of this application to the general model in the paper, let S denote

the state of the procurement mechanism. This state specifies, for each past search and each bid

b, the number of firms that joined the mechanism after that search with bid b, as well as the

history of signals θ = ϑm−1 for each firm in the mechanism. If a search is conducted at period t,

the state S at the end of period t also includes, for each bid b, the number of new firms identified

in period t that submitted bid b.

The buyer aims to maximize either welfare—the expected discounted value of the services

procured net of firms’ costs—or profits—the expected discounted value of the services procured

net of payments made to the firms. We refer to the latter objective as “profits” to facilitate

comparison with other screening problems, particularly those studied in the recent literature on

bidder solicitation in auctions; see, e.g., Lauermann and Wolinsky (2017) and Lauermann and

Wolinsky (2025). In our procurement application, the buyer maximizes profits when acting as a

firm procuring inputs for the production of a final good. Conversely, when the buyer represents

a local public authority—such as a municipality procuring services for its citizens—it is sufficient

to interpret profits as “buyer surplus.”

Consistent with the dynamic mechanism design literature, we say that a procurement mech-

anism is optimal if: (a) it is interim incentive compatible (IC) and individually rational (IR),

meaning that, without knowledge of the current state of the mechanism when solicited to join,

each firm—regardless of its cost—finds it optimal to join and bid truthfully, assuming that all

other firms do the same; and (b) it maximizes the buyer’s objective over the entire class of direct

revelation mechanisms that satisfy interim IC and IR.

For each of the objectives described above—welfare and profit maximization—the optimal

mechanism implements the same allocations as those sustained under an index policy analogous
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to the one in Theorem 1. Specifically, suppose each firm bids truthfully (i.e., each firm with cost

c submits bid b = c upon joining), and consider the following experimentation problem, which is

a special case of those covered by Theorem 1:

1. Each firm corresponds to an “arm”whose category is given by the firm’s bid (equivalently,

its cost), and whose state ωP (b, θ) combines the firm’s bid b with the history of past signal

realizations θ = ϑm−1;

2. The state ωS of the search technology specifies, for each previous search and each bid b,

the number of firms that joined the mechanism after that search with bid b. Since search incurs

no direct cost, we omit the search cost from the description of ωS.

3. The search technology is characterized by the distribution over the number of new firms

added to the mechanism following each expansion (as described above), along with the following

two assumptions: (a) the probability that a firm is identified after each expansion is independent

of its cost and service quality; and (b) all firms bid truthfully. Note that, unlike in the settings

studied in previous sections, each arm’s category here is endogenous, corresponding to the firm’s

exogenous cost under truthful bidding.

4. The flow expected payoff from procuring from a firm in state ωP (b, θ), when θ = ϑm−1, is

given by ū(ϑm−1)− b under welfare maximization, and by ū(ϑm−1)−γ(b) under profit maximiza-

tion.

Let χW and χPR denote the index policies characterized in Theorem 1 for this experimentation

problem, respectively for welfare and profit maximization.

Finally, for each bid b and each state of the mechanism S (defined exactly as in Section 2),

let S∧(b) denote the state that results from adding to the outcome of the most recent expansion

one additional firm that bids b. Then, let QW (b;S∧(b)) and QPR(b;S∧(b)) denote the expected

discounted number of times a firm with bid b is utilized (from the moment it joins the mechanism

onward), given that the state of the mechanism at the end of the period in which it joins is S∧(b),

respectively under policies χW and χPR.

Lemma 1 below follows from Theorem 1 along with standard properties of screening models

with a continuum of types.

Lemma 1. Under the optimal mechanism, for any S ≡ (ωS,SP ) and any b, a firm joining the

mechanism with bid b receives a lump-sum transfer equal to

TW (b;S∧(b)) = K +

∫ c̄

b

QW (y;S∧(y))dy

under welfare maximization, and equal to

TPR(b;S∧(b)) =

∫ c̄

b

QPR(y;S∧(y))dy
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under profit maximization, where K ≥ 0 is an arbitrary constant, and S∧(b) denotes the state of

the mechanism at the end of the period in which the firm joins. In each period, the buyer follows

the index policy χW under welfare maximization and the index policy χPR under profit maximiza-

tion. Under both mechanisms, participation followed by truthful bidding is weakly dominant for

every firm. Furthermore, without loss of optimality, the buyer may disclose the current state of

the mechanism to any identified firm prior to its joining.

5.3 Dynamics under Optimal Mechanisms

We now establish several properties of the procurement dynamics induced by the optimal mech-

anisms.

5.3.1 Preliminaries

We begin by establishing several useful properties of the search (or expansion) index. Let ≻
denote the strict dominance relation under the Monotone Likelihood Ratio order (MLR); that

is, F ≻ F̂ if and only if f(N)/f̂(N) is increasing in N . Let IS
x denote the search index, where

x = W under welfare maximization and x = PR under profit maximization. Lemma 2 below

characterizes key properties of these indexes.

The following definition proves useful:

Definition 3 (Ultra log concavity and convexity). A distribution F is UL-concave (respectively,

UL-convex) if L(N) ≡ (N + 1)f(N + 1)/f(N) is decreasing (respectively, increasing) in N .

The Poisson distribution provides a useful benchmark. When F is Poisson with parameter

λ, the posterior distribution over the total number N of firms in the market conditional on

n ∈ N firms having been identified through m ∈ N past searches is itself Poisson with parameter

λ(1− ρ)m. This posterior is decreasing in m but invariant in n.14 Hence, under a Poisson prior,

the search index deteriorates deterministically with each additional expansion. For the Poisson

distribution, L(N) = λ. Distributions that are UL-concave (respectively, UL-convex) are more

(respectively, less) concentrated around the mode of the probability mass function than a Poisson

distribution with the same mean. In the proof of Lemma 2, we show that these properties are

preserved by the posteriors over the number of firms yet to be discovered, which in turn has

important implications for the behavior of the search index.

14This follows from the general property that, when the distribution of the random variable X̃ is Poisson with
parameter λ and, conditional on X̃ = x, the random variable Ỹ |x is binomial with parameters (x, p), then the
unconditional distribution of Ỹ is Poisson with rate λp. In the current model, X̃ is the total number of firms in
the market, and Ỹ is the number of firms that remains undiscovered after m searches. The probability that a
firm in the market remains undiscovered after m searches is (1− ρ)m. Hence, conditional on X̃ = N , the random
variable Ỹ |N is binomial with parameters (N, (1−ρ)m). We conclude that the posterior distribution over the total
number of firms in the market that remain to be found when the first m searches identified n firms is invariant
in n and is Poisson with parameter λ(1− ρ)m.
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Lemma 2 (Properties of the search index IS
x ). The following properties about IS

x are true for

both x = W and x = PR:

1. IS
x depends on the state ωS of the search technology only through the number of past searches

(m) and the number of firms identified (n);

2. IS
x is decreasing in m;

3. IS
x is decreasing (respectively, increasing) in n if F is UL-concave (respectively, UL-convex).15

Part (1) establishes that the search index IS
x depends on the history of past search outcomes

only through two statistics: the number of searches m conducted thus far, and the total number

n of firms identified. With a slight abuse of notation, we will therefore write IS
x (m,n) to denote

the search index associated with the (m+ 1)-th search.

Part (2) establishes that, for a given number n of firms identified through past searches, the

search index IS
x (m,n) is decreasing in m: the more searches it takes to identify n firms, the

lower the resulting search index. This monotonicity arises because, holding n fixed, the posterior

distribution over the number of remaining firms in the market becomes less optimistic (in the

Monotone Likelihood Ratio–MLR–order) as the number of searches m increases.

Part (3) follows from the recursive characterization of the search index provided in Part

(2) of Theorem 1, together with the property that, when the distribution F is UL-concave

(respectively, UL-convex), a larger number n of firms identified through a fixed number m of

searches makes the buyer more pessimistic (respectively, optimistic) about the outcome of the

(m+1)-th search (i.e., the number of new firms identified, in the MLR order). Namely, the result

derives from this comparative statics property together with two additional facts: (a) stopping

in the computation of the search index occurs at the first time at which the search index itself

and the indexes of all the alternatives brought to the CS by the current and future searches fall

weakly below the value of the search index at the time the latter is computed; and (b) the search

index equals the expected discounted sum of the flow payoffs generated by the alternatives found

through search, normalized by the average discounted time required to realize them, with all the

expectations under the process induced by the index policy χW (welfare maximization) or χPR

(profit maximization). It is important to note that none of the results in this lemma rely on

the assumption that the signal-generating process satisfies the “no news is bad news” (NNBN)

property.

15If F is Poisson, IS
x is invariant in n.
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5.3.2 Positive Implications

We are now ready to derive several implications of two key features of the optimal procure-

ment mechanism—whether designed to maximize welfare or profit. First, the mechanism takes

the form of a sequence of auctions, used to elicit firms’ cost information. Second, the buyer’s

experimentation and solicitation strategies are governed by an index policy.

A key implication is that, when the distribution F is Poisson or UL-concave, the search

index declines with each additional search. This implies that the buyer becomes increasingly

lenient over time in her willingness to tolerate underperformance from the firms already in the

mechanism. The notion of such leniency is particularly sharp when the signal-generating process

satisfies the NNBN (No News is Bad News) property. To formalize this idea, let Ax(c;m,n)

denote the number of failed attempts the buyer allows a firm with cost c (revealed via its bid

upon entry) before initiating a new search, conditional on the fact that it took m searches to

identify n firms. This is defined under the optimal mechanism for x = W,PR, corresponding to

welfare and profit maximization, respectively. That is, when the first m searches have identified

n firms, any firm with cost c is granted at most Ax(c;m,n) opportunities to supply a satisfactory

service (i.e., to generate a signal ϑ = 1) before the (m + 1)-th search is triggered. Importantly,

the (m + 1)-th search will not occur as long as there exists a firm in the mechanism with state

ωP = (c, ϑs−1) such that either
∑s−1

l=0 ϑl > 0 (the firm has already provided a satisfactory service

at least once), or s − 1 < Ax(c;m,n) (the firm has not yet exhausted its allowed number of

attempts).

Lemma 3. The function Ax(c;m,n) satisfies the following properties, for x = W,PR:

1. It is decreasing in c and increasing in m;

2. If F is UL-concave (respectively, UL-convex), it is increasing (respectively, decreasing) in

n.16

That Ax(c;m,n) is decreasing in c follows from the fact that a higher cost increases the buyer’s

unit cost of procurement, which naturally leads the buyer to be less tolerant of underperformance

from higher-cost firms. In contrast, all other properties of the function Ax(c;m,n) are nontrivial

and follow from the characterization of the search index in Lemma 2.

Definition 4. Under objective x = W,PR, the buyer is said to be more lenient if she grants a

larger number of failed attempts Ax to each firm in the mechanism before initiating a new search,

and less lenient if she grants a smaller number of such attempts.

Proposition 2. The following properties hold for both x = W and x = PR:

16If F is Poisson, Ax(c;m,n) is invariant in n.
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1. Monotonicity of leniency in search depth under Poisson or UL-concave priors:

When F is either Poisson or UL-concave, the buyer becomes more lenient as the number

of searches increases, regardless of how many firms have been identified. That is, for any

cost c, and for all m′ > m, n′ ≥ n, Ax(c;m
′, n′) ≥ Ax(c;m,n).

2. Monotonicity of leniency in identified firms under UL-convex priors:

When F is UL-convex, for any fixed number of past searches m, the buyer becomes less

lenient the more firms have been identified. That is, for any cost c, and for all n′ > n,

Ax(c;m,n′) ≤ Ax(c;m,n).

While the result above is for the NNBN case, it extends more generally. Under the optimal

mechanism for x = W,PR, the (m + 1)-th search is not conducted as long as there exists at

least one firm in the mechanism whose index satisfies IP
x (c, ϑ

s−1) ≥ IS
x (m,n). That is, the buyer

postpones additional search until all firms in the current mechanism have indexes strictly below

the search index. This property follows directly from the indexability of the optimal policy, as

established in Lemma 1.

Moreover, because the monotonicity properties of the search index IS
x (m,n) in (m,n), as

established in Lemma 2, do not rely on the specifics of the signal-generating process, the quali-

tative implications extend beyond the NNBN case. In more general environments, the buyer can

still be interpreted as becoming more lenient if she tolerates lower values of the firm-level index

IP
x (c, ϑ

s−1) before initiating new searches.

In the NNBN setting, the index IP
x (c, ϑ

s−1) for a firm that has never delivered a satisfactory

service is a deterministic function of the firm’s cost c and the number of failed attempts. Under

more general signal structures, by contrast, the index depends on the buyer’s posterior belief

that the firm is able to deliver a satisfactory service, which may evolve stochastically with the

signal history ϑs−1.17

Our second result (Proposition 3 below) establishes that firms joining the procurement mech-

anism at a later stage—i.e., after a greater number of searches—earn higher expected profits

than those entering earlier, holding constant the number of competitors present at the time of

entry, the firms’ costs, and the individual history of experimentation outcomes. In other words,

the longer it takes the buyer to assemble the pool of potential suppliers, the more favorable the

expected profit becomes for a newly joining firm.

Proposition 3. Consider two states of the procurement mechanism, S = (ωS,SP ) and S̊ =

(ω̊S, S̊P ), such that the total number of firms in the mechanism and each firm’s state ωP =

17In settings with more general payoff structures, the index IP
x (c, ϑs−1) of a firm with cost c and signal history

ϑs−1 remains defined as the expected discounted sum of the buyer’s flow payoffs until stopping, normalized by
the expected discounted duration of time. However, unlike in simpler environments, this index need not admit a
sufficient statistic—such as the posterior belief that the firm’s product is safe or that the service is of high quality.
Instead, it may depend on the entire signal history ϑs−1, without reducing to a lower-dimensional summary.
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(c, ϑs−1) are identical in S and S̊ (i.e., S̊P = SP ). Let m and m̊ denote the number of searches

conducted under S and S̊, respectively, and assume that m̊ > m. Consider the perspective of a

firm with cost c, after being informed of the state of the procurement mechanism at the end of the

period it joins. Regardless of whether the buyer’s objective is welfare or profit maximization, the

firm’s expected discounted number of utilizations and hence its expected profits are greater after

learning that the state is S̊ than after learning that the state is S.

The result follows from Theorem 1, Lemmas 1 and 2, and the arguments in the proof of

Lemma 2, which establish that the distribution over the outcome of each search depends on

the state of the search technology only through the statistics (m,n). Since a firm’s index is a

deterministic function of its state ωP , every firm has the same index under the two states. In

contrast, the search index is lower in S̊ than in S, as it took more searches to identify the same

set of firms under S̊. This last property, together with the fact that the distribution over future

search outcomes depends only on (m,n) and is such that the likelihood of discovering new firms

decreases with the number of past searches, implies that the joining firm’s expected number of

utilizations is higher under S̊ than under S. Finally, because the firm’s expected profit under

the optimal mechanism is strictly increasing in its expected utilization (by Lemma 1), it follows

that its expected profit is also higher in state S̊.
As in Lemma 2, the result does not rely on the assumption that the signal-generating process

is NNBN. One may conjecture that the reason why a longer search process benefits a joining

firm is that it signals a greater likelihood that the buyer has been disappointed by the firms

previously utilized. While this property may also be relevant in specific settings, it plays no role

in Proposition 3. What makes the result compelling is that the only dimension differentiating

the two states is the length of the search process. The composition of the CS—formally captured

by the function mapping each firm’s state ωP = (c, ϑs−1) to the number of firms in that state—is

identical across S and S̊ (i.e., S̊P = SP ). In particular, note that if no further searches were

to occur, the joining firm’s expected profits would be the same under both S and S̊. Thus, the

difference in expected profits arises solely from the implications of a longer search process for the

buyer’s future behavior, not from differences in the current pool of firms.

5.3.3 Normative Implications

We now analyze the inefficiencies that arise under profit-maximizing procurement (namely, when

the buyer does not account for firms’ profits), focusing on those linked to the expansion of the pool

of potential suppliers (CS), that is, the solicitation of new firms. The objective is to understand

how the buyer’s behavior diverges from the socially optimal one when she prioritizes her own

surplus rather than total surplus. Define

∆(c;m,n) ≡ AW (c;m,n)− APR(c;m,n)
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as the difference in the number of failed attempts granted to a firm with cost c under welfare

and profit maximization, conditional on the first m searches having identified n firms. Also, let

ĉ(m,n) denote the solution to

IS
W (m,n)− IS

PR(m,n) = G(c)/g(c),

that is, the cost level at which the wedge between the welfare-based and profit-based search

indexes exactly offsets the handicap G(c)/g(c) in the virtual cost γ(c), which accounts for the

implications of firm utilization on informational rents.

We start with the following observation:

Lemma 4. ∆(c;m,n) · (c− ĉ(m,n)) > 0.

The lemma establishes that, prior to the (m + 1)-th expansion, low-cost firms are granted

an inefficiently large number of failed attempts relative to what would be optimal under welfare

maximization, while the opposite holds for high-cost firms. The result follows from the fact that,

under both the profit-maximizing and the welfare-maximizing mechanism, the buyer follows an

index policy, along with the recursive structure of the search index characterized in Part (2) of

Theorem 1.

To understand the result, note first that, under profit maximization, the search index is

distorted downward by a fixed positive amount to account for the informational rents that the

buyer must leave to the identified firms. Specifically, each firm’s profit-based index is lower than

its welfare-based counterpart by an amount equal to

IP
W (c, ϑs−1)− IP

PR(c, ϑ
s−1) =

G(c)

g(c)
,

reflecting the marginal rent the buyer must pay to the firms to induce truthful revelation. Since

the search index aggregates across the indexes of the firms identified through search—as estab-

lished in Part (2) of the theorem—the distortion in the search index satisfies

0 < IS
W (m,n)− IS

PR(m,n) <
G(c̄)

g(c̄)
,

where c̄ is the highest cost in the support of F . Other things equal, this wedge in the search

indexes contributes to delay in the solicitation of new firms.

Next note that the distortion in each firm’s index is smaller than the distortion in the search

index for low-cost firms, but larger for high-cost firms. This asymmetry arises because the

handicap G(c)/g(c) in the virtual costs is increasing in c, while the distortion in the search index

reflects an average across all identified firms. Since, under both welfare and profit maximization,

a new expansion is triggered if and only if all firms currently in the mechanism have indexes
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below the search index, these properties imply that—prior to launching the next expansion—the

buyer, under profit maximization, tolerates an inefficiently large deterioration in the indexes of

low-cost firms and an inefficiently small deterioration in the indexes of high-cost firms. The lemma

formalizes this insight by leveraging these monotonicity properties along with the structure of

the NNBN setting, in which the deterioration in each firm’s index is solely determined by the

number of failed attempts.

Note that the threshold ĉ is generally non-monotonic in m. To see why, consider that when

m is small, search is expected to yield many new firms, as shown in the proof of Lemma 2.

Some of these firms are likely to have low costs. Since such firms are the most influential in

determining the search index—and because their handicap G(c)/g(c) is small—it follows that

the wedge IS
W (m,n) − IS

PR(m,n) is also small for small m.18 Similarly, when m is large, the

expected number of new firms identified in future searches is very small (again by Lemma 2),

so the wedge between the welfare- and profit-based search indexes is again small. Thus, in both

early and late stages of the procurement process, ĉ(m,n) is close to c, implying that most firms

are granted an inefficiently low number of failed attempts under profit maximization relative to

the welfare benchmark.

Next, fix m and consider how variations in n affect the threshold ĉ(m,n). When the prior

is UL-concave or Poisson, ĉ(m,n) is typically non-monotonic in n. The reason is that, in these

cases, the probability of identifying new firms decreases with the number of firms already found.

As a result, the same logic used to explain the non-monotonicity of ĉ(m,n) in m applies here:

when few or many firms have already been identified, the wedge IS
W (m,n)− IS

PR(m,n) between

the search indexes is small which implies that ĉ(m,n) is close to c.

By contrast, when the distribution is UL-convex, identifying more firms increases the buyer’s

expectation that future searches will yield even more new firms, including those with low costs.

In this case, the wedge IS
W (m,n) − IS

PR(m,n) may decrease with n, implying that ĉ(m,n) may

also decrease in n. Under UL-convexity, it is thus possible that too many firms are granted too

few failed attempts when the pool of participating firms becomes large.

Proposition 4. The following observations characterize the inefficiencies induced by profit maxi-

mization:

• Low-cost firms (i.e., those with c < ĉ(m,n)) contribute to inefficient entrenchment—the

buyer delays the solicitation of new suppliers longer than would be efficient under welfare

maximization. Conversely, high-cost firms (with c > ĉ(m,n)) contribute to inefficient

impatience with incumbents, prompting premature search relative to the welfare benchmark.

18That low-cost firms are the most salient in the determination of the search index follows from its recursive
structure established in Theorem 1, which implies that (a) only the indexes of firms whose index exceeds the
search index contribute to its computation, and (b) the optimal policy π used in the definition of the search index
is itself an index policy, which prioritizes firms with the lowest costs.
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• An analyst who lacks information about firms’ indexes but knows that their bids are below

ĉ(m,n) can predict excessive delay in the expansion of the pool of potential suppliers, relative

to the efficient benchmark.

As anticipated in the Introduction, and in contrast to standard screening problems, when the

pool of firms is endogenous and gradually constructed over time, all firms contribute to search

inefficiencies, regardless of their type. However, low- and high-cost firms contribute in opposite

directions: low-cost firms tend to generate inefficient delays in the search for new suppliers, while

high-cost firms induce excessively early expansions.

6 Conclusions

We introduce a model of dynamic experimentation in which the decision maker alternates between

exploring alternatives in the consideration set and searching for new alternatives to explore in the

future. Each search stochastically delivers a new set of alternatives of varying types, which are

then added to the consideration set. As a result, the consideration set is constructed gradually

in response to the information revealed over time. We characterize the optimal policy and show

how the trade-off between exploring existing alternatives and expanding the consideration set

depends on the properties of the search technology. This evolving trade-off is governed by a

comparison of independent indexes, with the search/CS-expansion index computed recursively

to reflect future optimal decisions.

We illustrate how the results can be put to work in concrete applications by considering

the design problem of a buyer repeatedly procuring a service from multiple firms. The buyer

faces uncertainty about the number of potential suppliers and learns the quality of their services

through experimentation, while firms possess private information about their costs. The optimal

procurement mechanism—whether the buyer maximizes profit or total surplus—takes the form

of a sequence of auctions with endogenous and time-varying solicitation. Upon entry, firms bid

for the unit price at which they are willing to supply the service and receive a lump-sum transfer

designed to elicit truthful reporting. In each subsequent period, the buyer alternates between

procuring from firms with the highest index and soliciting new firms via advertising or other

outreach efforts. On the positive side, the analysis explains why a buyer may become more

lenient or more demanding with incumbent suppliers over time, and why later entrants may earn

higher expected profits, holding all else equal. On the normative side, we show that all firms

contribute to inefficiencies in the expansion and experimentation process, irrespective of their

type—but that low- and high-cost firms contribute in opposite directions.

The model can be used to study many dynamic problems in which the set of feasible alterna-

tives is not known ex ante—either due to limited attention or because alternatives are revealed

sequentially, for example by intermediaries such as search engines or online platforms. Exploring
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such applications offers a promising direction for future research.
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A Proofs

Proof of Theorem 1. Below we first establish the result in Part (2) of the theorem and then use

the recursive representation of the search index in (3) to show that, when the DM follows an index

policy, her expected (per-period) payoff satisfies the representation in (4), thus establishing Part

(3) of the theorem. We then show how the representation of the DM’s payoff in (4), along with

the recursive representation of the search index in Part (2) of the theorem and an appropriate

description of the state space that exploits the classification of the alternatives into categories,

permits us to establish Part (1) of the theorem, i.e., the optimality of the index policy, by means

of a novel proof that shows that the DM’s payoff under such a policy satisfies the Bellman

equation for the dynamic program under consideration.

Part (2). Let τ̂ be the optimal stopping time in the definition of IS(ωS). Note that, at τ̂ ,

the index of each alternative brought to the CS by the search under consideration (initiated in

state ωS), as well as the index of search itself, must be weakly smaller than IS(ωS). Otherwise,

by continuing to search, or by selecting one of the alternatives brought to the CS by the search

under consideration for which the index is larger than IS(ωS) and stopping optimally from that

moment onward, the DM would attain an average payoff per unit of average discounted time

Eπ
[∑τ−1

s=0 δ
sUs|ωS

]
Eπ

[∑τ−1
s=0 δ

s|ωS
]

strictly greater than IS(ωS), contradicting the optimality of τ̂ in the definition of IS(ωS).19 This

implies that τ̂ is weakly greater than τ ∗, where the latter is the first time at which the index of

search and the index of each alternative brought to the CS by the search under consideration

are weakly below IS(ωS). Moreover, since at τ ∗ the index of search and of each alternative

brought to the CS by the search under consideration are weakly below IS(ωS), if τ̂ > τ ∗, the

average payoff per unit of average discounted time between τ ∗ and τ̂ must be equal to IS(ωS).

Hence, under the optimal selection rule in the definition of IS(ωS), the average payoff per unit

of average discounted time from 0 to τ ∗ must also be equal to IS(ωS). This implies that the

optimal stopping time in the definition of IS(ωS) can be taken to be τ ∗. Because the index policy

χ∗ selects in each period between 0 and τ ∗ the alternative for which the average payoff per unit

of average discounted time is the largest (including search), we have that the optimal selection

rule π in the definition of IS(ωS) must coincide with the index policy χ∗. That IS(ωS) satisfies

the recursive representation in Part (2) then follows from the arguments above.

Part (3). We construct the following stochastic process based on the values of the indexes,

and the expansion of the CS through search, under the index policy χ∗. Starting with the initial

19Since infinity is allowed as a value of the stopping time, the supremum in the definitions of IS (and IP ) is
attained, that is, an optimal stopping time exists (the arguments are similar to those in Mandelbaum, 1986, and
hence omitted).

34



state S0 = (SP
0 , ω

S
0 ), let v

0 ≡ max{I∗(SP
0 ), IS(ωS

0 )}. Let t(v0) be the first time at which, when

the DM follows the policy χ∗, all indexes are strictly below v0, with t(v0) = ∞ if this event never

occurs. Note that t(v0) differs from κ(v0), as κ(v0) = 0 is the first time at which all indexes are

weakly below v0. Next let v1 ≡ max{I∗(SP
t(v0)), IS(ωS

t(v0))} be the value of the largest index at

t(v0), where St(v0) = (SP
t(v0), ω

S
t(v0)) is the state of the decision problem in period t(v0). Note that,

by construction, t(v0) = κ(v1). Furthermore, when t(v0) < ∞, if v0 > IS(ωS
0 ), then ωS

t(v0) = ωS
0 .

We can proceed in this manner to obtain a strictly decreasing sequence of values (vi) i≥0, with

corresponding stochastic times (κ(vi))i≥0. Note that the values vi are all non-negative, as the

DM’s outside option is normalized to zero.

Next, for any i = 0, 1, 2, ..., let ηi ≡
∑κ(vi+1)−1

s=κ(vi)
δs−κ(vi)Us denote the discounted sum of the

net payoffs between periods κ(vi) and κ(vi+1)− 1, when the DM follows the index policy, and let

(ηi)i≥0 denote the corresponding sequence of discounted accumulated net payoffs, with ηi = 0 if

κ(vi) = ∞.

Denote by V(S0) the expected (per-period) net payoff under the index policy χ∗, given the

initial state of the problem S0. That is, V(S0) = (1− δ)Eχ∗
[
∑∞

t=0 δ
tUt|S0]. By definition of the

processes (κ(vi))i≥0 and (ηi)i≥0, V(S0) = (1−δ)Eχ∗
[∑∞

i=0 δ
κ(vi)ηi|S0

]
. Next, using the definition

of the indexes in (1) and (2), observe that

vi =
(1− δ)Eχ∗ [

ηi|Sκ(vi)

]
Eχ∗ [1− δκ(vi+1)−κ(vi)|Sκ(vi)

] . (8)

To see why (8) holds, recall that, at period κ(vi), given the state of the decision problem Sκ(vi),

the value of the highest index is vi. Now suppose that the alternative corresponding to vi is

a physical alternative and that all other physical alternatives’ indexes, as well as the index of

search, are strictly below vi. Recall that the optimal stopping time τ in the definition of the

index of the physical alternative corresponding to vi in (1) is the first period (strictly above κ(vi))

at which the alternative’s index falls below vi. While it is convenient to take this fall to be weak,

it is well known that one can equivalently take the fall to be strict. That is, stopping at the

first period at which the index reaches a value equal to or smaller than the value at the time the

index was computed is optimal, but so is stopping at the first period at which the index reaches

a value strictly below the one at the time the index was computed. Now recall that t(vi) is the

first time at which all indexes are strictly below vi. Because the CS in period κ(vi) contains only

one alternative with index equal to vi (the physical one under consideration), t(vi) also coincides

with the first period at which the index of the specific alternative under consideration drops

strictly below vi. Recall that vi+1 is the largest index at period t(vi) and that t(vi) = κ(vi+1).

The definition of the index in (1), along with the optimality of stopping at the first time the
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index drops strictly below its initial value, and the definition of ηi, then imply that

vi =
Eχ∗

[∑κ(vi+1)−1

s=κ(vi)
δs−κ(vi)Us|Sκ(vi)

]
Eχ∗

[∑κ(vi+1)−1

s=κ(vi)
δs−κ(vi)|Sκ(vi)

] =
Eχ∗ [

ηi|Sκ(vi)

]
Eχ∗

[
1−δκ(v

i+1)−κ(vi)

1−δ
|Sκ(vi)

]
which corresponds to the formula in (8).

Next, suppose that the alternative with the highest index at period κ(vi) is search, and that

all physical alternatives in the CS in period κ(vi) have an index strictly smaller than vi. As

shown in the proof of Part (1) of Theorem 1 above, the optimal stopping time in the definition

of the index of search in (2) is the first period (strictly above κ(vi)) at which the index of search

and of all the alternatives introduced through search, fall weakly below vi. Equivalently, as

discussed above, the optimal stopping time can also be taken to be the first period at which

the index of search and of all the alternatives introduced through search fall strictly below vi.

Because all physical alternatives in the CS at period κ(vi) have an index strictly below vi, such

a period coincides with t(vi), that is, with the first period at which the index of search and of all

alternatives in the CS are strictly below vi. Using the above property of the optimal stopping

time in the definition of the search index in (2), along with the fact that t(vi) = κ(vi+1) and the

definition of ηi, we then have that the search index evaluated at period κ(vi) also satisfies the

condition in (8).

Finally, suppose that, at period κ(vi), there are multiple options (“physical” alternatives

and/or search) with index vi. Then observe that the average sum Eχ∗
[∑κ(vi+1)−1

s=κ(vi)
δs−κ(vi)Us|Sκ(vi)

]
of the discounted net payoffs from utilizing all options whose period-κ(vi) index is equal to vi

till the first period t(vi) = κ(vi+1) at which the indexes of all options are strictly below vi,

normalized by the average per unit discounted time Eχ∗
[∑κ(vi+1)−1

s=κ(vi)
δs−κ(vi)|Sκ(vi)

]
is the same

as the average sum Eχ∗
[∑T−1

s=κ(vi) δ
s−κ(vi)Us|Sκ(vi)

]
of the discounted net payoffs from utilizing

each individual option with index (at period κ(vi)) equal to vi till the first time T at which that

option’s index (and, in case the option is search, also the indexes of all alternatives brought to the

CS by the search initiated at κ(vi)) fall strictly below vi, normalized by the average discounted

time Eχ∗
[∑T−1

s=κ(vi) δ
s−κ(vi)|Sκ(vi)

]
. This follows from the independence of the processes. Hence,

Condition (8) also holds when, at κ(vi), there are multiple options with index vi.

Multiplying both sides of (8) by δκ(v
i), rearranging terms, and using the fact that δκ(v

i) is

known at κ(vi), we have that

(1− δ)Eχ∗
[
δκ(v

i)ηi|Sκ(vi)

]
= viEχ∗

[
δκ(v

i) − δκ(v
i+1)|Sκ(vi)

]
.

Taking expectations of both sides of the previous equality given the initial state S0, and using
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Figure 1: An illustration of the function δκ(v) and the region∑∞
i=0 v

i
(
δκ(v

i) − δκ(v
i+1)

)
=

∫∞
0 vdδκ(v), for a particular path with κ(v3) = ∞.

the law of iterated expectations, we have that

(1− δ)Eχ∗
[
δκ(v

i)ηi|S0

]
= Eχ∗

[
vi
(
δκ(v

i) − δκ(v
i+1)

)
|S0

]
.

If follows that

V(S0) = Eχ∗

[ ∞∑
i=0

vi
(
δκ(v

i) − δκ(v
i+1)

)
|S0

]
. (9)

Next, note that δκ(v
i) = 0 whenever κ(vi) = ∞, and that, for any i = 0, 1, ..., κ(v) = κ(vi+1)

for all vi+1 < v < vi. It follows that (9) is equivalent to

V(S0) = Eχ∗
[∫ ∞

0
vdδκ(v)|S0

]
= Eχ∗

[∫ ∞

0

(
1− δκ(v)

)
dv|S0

]
=

∫ ∞

0

(
1− Eχ∗

[
δκ(v)|S0

])
dv. (10)

The construction of the integral function (10) is illustrated in Figure 1.

Part (1). The proof of Part (1) exploits the recursive representation of the search index

established in Part (2) of Theorem 1, along with the representation of the DM’s payoff under

the index rule established in Part (3) of Theorem 1 and an appropriate description of the state

space, to verify that the DM’s payoff under the index policy satisfies the Bellman equation of

the corresponding dynamic program. The proof is in two steps. Step 1 uses the representation

of the DM’s payoff under the index rule established in Part (3) of Theorem 1 in the main text to

characterize how much the DM obtains from following the index policy χ∗ from the outset rather

than being forced to make a different decision in the first period and then reverting to χ∗ from

the next period onward. Step 2 then uses the results in step 1 to establish the optimality of χ∗

through dynamic programming.

Step 1 . In the analysis below, we find it useful to describe changes in the composition of

the CS, the evolution of the search technology, as well as all information acquired about the

alternatives, entirely in terms of transitions between states. Rather than keeping track of the
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collection of kernels Gξ(ϑ
m;µ) describing the conditional distributions from which the marginal

signals ϑm+1 are drawn, we describe directly the evolution of each alternative’s state ωP as

follows. When the DM explores an alternative currently in state ωP , its new state ω̃P is drawn

from a distribution HωP ∈ ∆(ΩP ) that is invariant to time.20 When the DM explores a different

alternative, or expands the CS, the alternative currently in state ωP remains in the same state

with certainty at the beginning of the next period. Similarly, each time search is conducted, given

the current state of the search technology ωS, the new state of the search technology ω̃S is drawn

from a distributionHωS ∈ ∆(ΩS).The distributionsHωs are time-homogeneous (i.e., the evolution

of the search technology depends on past search outcomes but is invariant in calendar time), and

the outcome of each new search is drawn from HωS independently from the idiosyncratic and

time-varying component θ of each alternative in the CS.

Abusing notation, then denote the state of the decision problem by a function S : Ω → N
that specifies, for each ω ∈ Ω, including ω ∈ ΩS, the number of alternatives, including the search

technology, that are in state ω.21 Given this notation, for any pair of states S ′ and S ′′ then define

S ′ ∨ S ′′ ≡ (S ′(ω) + S ′′(ω) : ω ∈ Ω) and S ′\S ′′ ≡ (max{S ′(ω)− S ′′(ω), 0} : ω ∈ Ω). Any feasible

state of the decision problem must specify one, and only one, state of the search technology

(i.e., one state ω̂S for which S(ω̂S) = 1 and such that S(ωS) = 0 for all ωS ̸= ω̂s). However, it

will be convenient to consider fictitious (infeasible) states where search is not possible, as well as

fictitious states with multiple search possibilities. If the state of the decision problem is such that

either (i) the CS is empty, or (ii) there is a single alternative in the CS and the latter cannot be

expanded, we will denote such a state by e(ω), where ω ∈ Ω is the state of the search technology

in case (i) and of the single physical alternative in case (ii). Throughout the analysis below,

we maintain the assumption that an outside option with value equal to zero is available to the

DM. However, to avoid possible confusion, here we do not explicitly treat the outside option as

a separate alternative.

Lemma 5. For any v ∈ R and states S ′ and S ′′, κ(v|S ′ ∨ S ′′) = κ(v|S ′) + κ(v|S ′′).

Proof of Lemma 5. The result follows from the fact that the state of each alternative that is not

explored in a given period remains unchanged, along with the fact that the time-varying com-

ponents θ of the various alternatives evolve independently of one another and of the state of the

search technology, given the alternatives’ categories ξ. Similarly, the state of the search technol-

ogy remains unchanged in periods in which search is not conducted, and evolves independently

of the time-varying component θ in the state of each existing alternative, given the alternatives’

20Because each alternative’s category ξ is fixed, given the current state ωP = (ξ, θ), the distribution HωP assigns
probability one to states whose category is ξ and whose signal history ϑm+1 = (ϑm, ϑm+1) is a “follower” of ϑ

m,
meaning that it is obtained by adding a new signal realization ϑm+1 to the history ϑm.

21With this representation, there is a unique ω̂s ∈ ΩS such that S(ωS) = 1 if ωs = ω̂s and S(ωS) = 0 if
ωs ̸= ω̂s. The special case where the DM does not have the option to search corresponds to the case where for
all ωS ∈ ΩS , S(ωS) = 0.
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categories ξ. Furthermore, the index of each alternative is a function only of the alternative’s

state, and the index of search is a function only of the state of the search technology. Therefore,

all indexes evolve independently of one another (conditional on the alternatives’ categories), and

evolve only when their corresponding decision (search or exploration of an alternative) is chosen.

Since the decisions are taken under the index policy χ∗, the result follows from the fact that,

starting from any state S, the total time it takes to bring all indexes (that is, those of the alter-

natives in the CS as well as the index of search) below any value v is the sum (across alternatives

in the CS and search) of the individual times necessary to bring each index below v in isolation.

□

Given the initial state S0, for any ωP ∈ {ω̂P ∈ ΩP : SP
0 (ω̂

P ) > 0}, denote by E
[
u|ωP

]
the

immediate expected payoff from exploring an alternative in state ωP and by ω̃P the new state of

that alternative triggered by its exploration (drawn from HωP ). Let

V P (ωP |S0) ≡ (1− δ)E
[
u|ωP

]
+ δEχ∗ [V (

S0\e(ωP ) ∨ e(ω̃P )
)
|ωP

]
(11)

denote the DM’s payoff from starting with exploring an alternative in state ωP and then following

the index policy χ∗ from the next period onward. Similarly, let

V S(ωS |S0) ≡ −(1− δ)E
[
c|ωS

]
+ δEχ∗ [V (

S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S)
)
|ωS

]
(12)

denote the DM’s payoff from expanding the CS when the state of search is ωS, and then following

the index policy χ∗ from the next period onward, where E
[
c|ωS

]
is the immediate expected cost

from searching (when the state of the search technology is ωS), ω̃S is the new state of the search

technology, and W P (ω̃S) is the state of the new alternatives brought to the CS by the current

search, with c and W P (ω̃S) jointly drawn from the distribution HωS . Note that W P (ω̃S) is a

deterministic function of the new state ω̃S of the search technology. To see this, recall that, for

any m ∈ N, the function Em in the definition of the state of the search technology counts how

many alternatives of each possible state ωP have been added to the CS, as a result of the m-th

search.

We introduce a fictitious “auxiliary option” which is available at all periods and yields a

constant reward M < ∞ when chosen. Denote the state corresponding to this fictitious auxiliary

option by ωA
M , and enlarge ΩP to include ωA

M . Similarly, let e(ωA
M) denote the state of the problem

in which only the auxiliary option with fixed reward M is available. Since the payoff from the

auxiliary option is constant at M , if v ≥ M , then κ(v|S0 ∨ e(ωA
M)) = κ(v|S0), whereas if v < M ,

then κ(v|S0 ∨ e(ωA
M)) = ∞. Hence, the representation of the DM’s payoff under the index policy

in Part (3) of Theorem 1 in the main text, adapted to the fictitious environment that includes
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the auxiliary option, implies that

V(S0 ∨ e(ωA
M )) =

∫ ∞

0

(
1− Eχ∗

[
δκ(v)|S0 ∨ e(ωA

M )
])

dv = M +

∫ ∞

M

(
1− Eχ∗

[
δκ(v)|S0

])
dv

= V(S0) +

∫ M

0
Eχ∗

[
δκ(v)|S0

]
dv. (13)

The definition of χ∗, along with Conditions (11) and (12), then imply the following:

Lemma 6. For any (ωS, ωP ,M),

V(e(ωS) ∨ e(ωA
M )) =

V S(ωS |e(ωS) ∨ e(ωA
M )) if M ≤ IS(ωS)

M > V S(ωS |e(ωS) ∨ e(ωA
M )) if M > IS(ωS)

(14)

V(e(ωP ) ∨ e(ωA
M )) =

V P (ωP |e(ωP ) ∨ e(ωA
M )) if M ≤ IP (ωP )

M > V P (ωP |e(ωP ) ∨ e(ωA
M )) if M > IP (ωP ).

(15)

Proof of Lemma 6. First note that the index corresponding to the auxiliary option is equal to

M . Hence, if M ≤ IS(ωS), given e(ωS) ∨ e(ωA
M), χ∗ prescribes to start with search, implying

that V(e(ωS) ∨ e(ωA
M)) = V S(ωS|e(ωS) ∨ e(ωA

M)). If, instead, M > IS(ωS), χ∗ prescribes to

select the auxiliary option forever, with an expected (per period) payoff of M. To see why, in this

case, M > V S(ωS|e(ωS) ∨ e(ωA
M)), observe that the payoff V S(ωS|e(ωS) ∨ e(ωA

M)) from starting

with search and then following χ∗ in each subsequent period is equal to V S(ωS|e(ωS)∨ e(ωA
M)) =

Eχ∗

>1

[
(1− δ)

∑τ̄−1
s=0 δ

sUs + δτ̄M |ωS
]
, where τ̄ is the first time at which the index of search and of

all the alternatives brought to the CS by search fall weakly below M , and where the expectation

is under the process that obtains starting from e(ωS) ∨ e(ωA
M) by searching in the first period

and then following the index policy in each subsequent period (the notation Eχ∗

>1[·] is meant to

highlight that the expectation is under such a process). This follows from the fact that, once

the DM, under χ∗, opts for the auxiliary option, he will continue to select that option in all

subsequent periods. By definition of IS(ωS),

M > IS(ωS) ≡ sup
π,τ

Eπ
[∑τ−1

s=0 δ
sUs|ωS

]
Eπ

[∑τ−1
s=0 δ

s|ωS
] ≥

Eχ∗

>1

[∑τ̄−1
s=0 δ

sUs|ωS
]

Eχ∗

>1

[∑τ̄−1
s=0 δ

s|ωS
] .

Rearranging, MEχ∗

>1

[∑τ̄−1
s=0 δ

s|ωs
]
> Eχ∗

>1

[∑τ̄−1
s=0 δ

sUs|ωS
]
. Therefore,

Eχ∗

>1

[
(1− δ)

τ̄−1∑
s=0

δsUs + δτ̄M |ωS

]
< MEχ∗

>1

[
(1− δ)

τ̄−1∑
s=0

δs + δτ̄ |ωS

]
= M.

Similar arguments establish Condition (15). □

Next, for any initial state S0 of the decision problem, and any state ωP ∈ {ω̂P ∈ ΩP : S0(ω̂
P ) >

0} of the alternatives in the CS corresponding to S0, let D
P (ωP |S0) ≡ V(S0)−V P (ωP |S0) denote
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the payoff differential between (a) starting by following the index rule χ∗ right away and (b)

exploring first one of the alternatives in state ωP and then following χ∗ thereafter. Similarly, let

DS(ωS|S0) ≡ V(S0)− V S(ωS|S0) denote the payoff differential between (c) starting with χ∗ and

(d) starting with search in state ωS and then following χ∗. The next lemma relates these payoff

differentials to the corresponding ones in a fictitious environment with the auxiliary option. In

the statement of the lemma, S0 \ e(ωS) is the state of a fictitious problem where search is not

possible, whereas SP
0 \e(ωP ) is the state of the CS obtained from SP

0 by subtracting an alternative

in state ωP .

Lemma 7. Let S0 be the initial state of the decision problem, with ωS ∈ ΩS denoting the state of

the search technology, as specified in S0. We have that

DS(ωS |S0) =

∫ I∗(SP
0 )

0
DS(ωS |e(ωS) ∨ e(ωA

v ))dEχ∗
[
δκ(v)|S0 \ e(ωS)

]
(16)

+ Eχ∗
[
δκ(0)|S0\e(ωS))

]
DS(ωS |e(ωS) ∨ e(ωA

0 )).

Similarly, for any alternative in the CS in state ωP ∈ {ω̂P ∈ ΩP : SP
0 (ω̂

P ) > 0},

DP (ωP |S0) =

∫ max{I∗(SP
0 \e(ωP )),IS(ωS)}

0
DP (ωP |e(ωP ) ∨ e(ωA

v ))dEχ∗
[
δκ(v)|S0 \ e(ωP )

]
(17)

+ Eχ∗
[
δκ(0)|S0\e(ωP ))

]
DP (ωP |e(ωP ) ∨ e(ωA

0 )).

Proof of Lemma 7. Using Condition (13), we have that, given the state S0∨e(ωA
M) of the decision

problem, and ωS ∈ ΩS ,

DS(ωS |S0 ∨ e(ωA
M )) = V(S0) +

∫ M

0
Eχ∗

[
δκ(v)|S0

]
dv + (1− δ)E

[
c|ωS

]
(18)

− δEχ∗
[
V(S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S)) +

∫ M

0
Eχ∗

[
δκ(v)|S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S))

]
dv|ωS

]
,

where the equality follows from combining (12) with (13). Similarly,

DS(ωS |e(ωS) ∨ e(ωA
M )) = V(e(ωS)) +

∫M
0 Eχ∗ [

δκ(v)|e(ωS)
]
dv + (1− δ)E

[
c|ωS

]
−δEχ∗

[
V(e(ω̃S) ∨WP (ω̃S)) +

∫M
0 Eχ∗ [

δκ(v)|e(ω̃S) ∨WP (ω̃S))
]
dv|ωS

]
.

(19)

Differentiating (18) and (19) with respect to M , using the independence across alternatives

and search and Lemma 5, we have that

∂

∂M
DS(ωS |S0 ∨ e(ωA

M )) = Eχ∗
[
δκ(M)|S0\e(ωS)

] ∂

∂M
DS(ωS |e(ωS) ∨ e(ωA

M )). (20)

That is, the improvement in DS(ωS|S0 ∨ e(ωA
M)) that originates from a slight increase in the

value of the auxiliary option M is the same as in a setting with only search and the auxiliary
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option, DS(ωS|e(ωS) ∨ e(ωA
M)), discounted by the expected time it takes (under the index rule

χ∗) until there are no indexes with value strictly higher than M , in an environment without

search where the CS is the same as the one specified in S0. Similar arguments imply that, for

any ωP ∈ {ω̂P ∈ ΩP : S0(ω̂
P ) > 0},

∂

∂M
DP (ωP |S0 ∨ e(ωA

M )) = Eχ∗
[
δκ(M)|S0\e(ωP )

] ∂

∂M
DP (ωP |e(ωP ) ∨ e(ωA

M )). (21)

Let M∗ ≡ max{I∗(SP
0 ), IS(ωS)}. Integrating (20) over the interval (0,M∗) of possible values

for the auxiliary option and rearranging, we have that

DS(ωS |S0 ∨ e(ωA
0 )) = DS(ωS |S0 ∨ e(ωA

M∗))−
∫ M∗

0
Eχ∗

[
δκ(v)|S0\e(ωS))

] ∂

∂v
DS(ωS |e(ωS) ∨ e(ωA

v ))dv

= DS(ωS |S0 ∨ e(ωA
M∗))−DS(ωS |e(ωS) ∨ e(ωA

M∗))

+ Eχ∗
[
δκ(0)|S0\e(ωS))

]
DS(ωS |e(ωS) ∨ e(ωA

0 ))

+

∫ M∗

0
DS(ωS |e(ωS) ∨ e(ωA

v ))dEχ∗
[
δκ(v)|S0\e(ωS))

]
,

where the second equality follows from integration by parts and from the fact that

Eχ∗ [
δκ(M

∗)|S0\e(ωS)
]
= 1.

That the outside option has value normalized to zero also implies that DS(ωS|S0 ∨ e(ωA
0 )) =

DS(ωS|S0). It is also easily verified that DS(ωS|S0 ∨ e(ωA
M∗)) = DS(ωS|e(ωS) ∨ e(ωA

M∗)). This

follows immediately from the observation that V(S0 ∨ e(ωA
M∗)) = V(e(ωS) ∨ e(ωA

M∗)) = M∗, and

similarly

Eχ∗ [V (
S0\e(ωS) ∨ e(ω̃S) ∨W P (ω̃S) ∨ e(ωA

M∗)
)
|ωS

]
= Eχ∗ [V (

e(ω̃S) ∨W P (ω̃S) ∨ e(ωA
M∗)

)
|ωS

]
.

Intuitively, under the index policy, any alternative with index strictly below M∗ is never explored

given the presence of an auxiliary alternative with payoff M∗. Therefore, we have that

DS(ωS |S0) =

∫ M∗

0
DS(ωS |e(ωS) ∨ e(ωA

v ))dEχ∗
[
δκ(v)|S0\e(ωS)

]
(22)

+ Eχ∗
[
δκ(0)|S0\e(ωS))

]
DS(ωS |e(ωS) ∨ e(ωA

0 )).

Similar arguments imply that

DP (ωP |S0) =

∫ M∗

0
DP (ωP |e(ωP ) ∨ e(ωA

v ))dEχ∗
[
δκ(v)|S0\e(ωP )

]
(23)

+ Eχ∗
[
δκ(0)|S0\e(ωP ))

]
DP (ωP |e(ωP ) ∨ e(ωA

0 )).
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To complete the proof of Lemma 7, we consider separately two cases. Case (1): given S0,

χ∗ specifies starting by exploring a physical alternative (i.e., M∗ = I∗(SP
0 )). Then Condi-

tion (16) in the lemma follows directly from (22). Thus consider Condition (17). First ob-

serve that, for any state ωP ∈ ΩP such that M∗ > max{I∗(SP
0 \e(ωP )), IS(ωS)}, we have that

M∗ = IP (ωP ), in which case DP (ωP |S0) = DP (ωP |e(ωP ) ∨ e(ωA
0 )) = 0 and the integrand

DP (ωP |e(ωP )∨e(ωA
v )) in (23) is equal to zero over the interval [0, IP (ωP )] and hence also over the

interval [0,max{I∗(SP
0 \e(ωP )), IS(ωS)}]. We thus have that, in this case, Condition (17) clearly

holds. Next observe that, for any state ωP ∈ ΩP such that M∗ = max{I∗(SP
0 \e(ωP )), IS(ωS)},

Condition (17) follows directly from (23).

Case (2): given S0, χ
∗ specifies starting with search (i.e., M∗ = IS(ωS)). Then, for any

ωP ∈ ΩP , max{I∗(SP
0 \e(ωP )), IS(ωS)} = M∗, in which case Condition (17) in the lemma

follows directly from (23). That Condition (16) also holds follows from the fact that, in this case,

DS(ωS|S0) = DS(ωS|e(ωS)∨e(ωA
0 )) = 0 and the integrand DS(ωS|e(ωS)∨e(ωA

v )) in (22) is equal

to zero over the entire interval
[
0,max{I∗(SP

0 \e(ωP )), IS(ωS)}
]
. □

Step 2. Using the characterization of the payoff differentials in Lemma 7, we now establish

that the average per-period payoff under χ∗ solves the Bellman equation for our dynamic opti-

mization problem. Let V∗(S0) ≡ (1 − δ)supχ∈XEχ [
∑∞

t=0 δ
tUt|S0] denote the value function for

the dynamic optimization problem.

Lemma 8. For any state of the decision problem S0, with ωS denoting the state of the search

technology as specified under S0,

1. V(S0) ≥ V S(ωS |S0), and V(S0) = V S(ωS |S0) if and only if IS(ωS) ≥ I∗(SP
0 );

2. for any ωP ∈ {ω̂P ∈ ΩP : S0(ω̂
P ) > 0}, V(S0) ≥ V P (ωP |S0), and V(S0) = V P (ωP |S0) if and

only if IP (ωP ) = I∗(SP
0 ) ≥ IS(ωS).

Hence, for any S0, V(S0) = V∗(S0), and χ∗ is optimal.

Proof of Lemma 8. Part (1 ). First, use (14) to note that, for all v ≥ 0, DS(ωS|e(ωS)∨ e(ωA
v )) ≥

0, with the inequality holding as an equality if and only v ≤ IS(ωS). Therefore, from (16),

DS(ωS|S0) ≥ 0 – and hence V(S0) ≥ V S(ωS|S0) – with the inequality holding as an equality if

and only if I∗(SP
0 ) ≤ IS(ωS).

Part (2 ). Similarly, use (15) to observe that for any ωP ∈ {ω̂P ∈ ΩP : SP
0 (ω̂

P ) > 0} and

any v ≥ 0, DP (ωP |e(ωP ) ∨ e(ωA
v )) ≥ 0, with the inequality holding as an equality if and only if

0 ≤ v ≤ IP (ωP ). Therefore, from (17), DP (ωP |S0) ≥ 0 with the inequality holding as equality

if and only if IP (ωP ) ≥ max{I∗(SP
0 \e(ωP )), IS(ωS)}. The result in Part (2) of the lemma then

follows from the fact that the last inequality holds if and only if IP (ωP ) = I∗(SP
0 ) ≥ IS(ωS).
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Next, note that, jointly, Conditions 1 and 2 in the lemma imply that

V(S0) = max

{
V S(ωS |S0), max

ωP∈{ω̂P∈ΩP :SP
0 (ω̂P )>0}

V P (ωP |S0)

}
.

Hence V solves the Bellman equation. That δTEχ [
∑∞

s=T δsUs|S] → 0 as T → ∞ guarantees that

V(S0) = V∗(S0), and hence the optimality of the index policyχ∗. □

This completes the proof of Part (1), and hence Theorem 1. ■

Proof of Lemma 1. Observe that, under each of the two objectives (i.e., for x = W,PR), for any

state of the mechanism S = (ωS,SP ), a firm with cost c joining the mechanism with a bid equal

to b obtains an expected payoff equal to

(b− c)Qx(b;S∧(b)) + Tx(b;S∧(b))

when, as a consequence of the firm’s joining, the state of the mechanism is S∧(b). Because

Qx(b;S∧(b)) is decreasing in b, standard results in mechanism design imply that, irrespective of

S, joining the mechanism and bidding b = c is weakly dominant for the firm.

That the procurement mechanism with transfers TW is welfare maximizing follows directly

from Theorem 1. That the procurement mechanism with transfers TPR is profit maximizing

follows from the following observations. Under any (interim) IC and IR mechanism, expected

profits are equal to expected dynamic virtual surplus. The latter is equal to expected total

welfare when the buyer’s cost of procuring from each firm with cost c is equal to γ(c). The result

then follows from the same arguments as for welfare maximization. ■

Proof of Lemma 2. Denote by FωS the cdf of the random variable describing the total number

of firms in the market that have not been identified yet, when the state of the search technology

is ωS, with the latter describing, for each past search and each bid b, the total number of firms

joining as the result of that search with a bid equal to b. Let fωS denote the corresponding

probability distribution function. That is, for any l ∈ N, fωS(l) is the probability that the

number of firms in the market that remain to be identified is l. Note that fωS(l) depends on

ωs only through the total number m of past searches and the total number n of firms identified

through these searches. Hereafter, we denote by fn,m(l) the probability that the number of

remaining firms is l given (n,m) and observe that

fn,m(l) ∝ f(l + n)

(
l + n

n

)
(1− ρ)lm. (24)

We denote by F n,m the corresponding cdf.

Part (1) of the lemma follows from the above observation along with the fact that each
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expansion identifies each firm in the market that has not been identified yet independently of the

outcome of any other search and of the firms’ costs.

Before turning to Parts (2) and (3), we establish the following claim.

Claim 1. If the prior F is UL-concave (respectively, UL-convex), then, for any (n,m), F n,m is

UL-concave (respectively, UL-convex).

Proof of Claim 1. For any n and m, any l, let

Ln,m(l) ≡ (l + 1)fn,m(l + 1)

fn,m(l)

and observe that

Ln,m(l) =
(l + 1)f(l + 1 + n)

(
l+1+n

n

)
(1− ρ)(l+1)m

f(l + n)
(
l+n
n

)
(1− ρ)lm

= L(l + n)(1− ρ)m,

Hence, Ln,m(l) is increasing (respectively, decreasing) in l if and only if L is increasing (respec-

tively, decreasing). □

To establish Part 2, we show that for any prior F , fixing the number of firms n in the CS,

F n,m is decreasing in m in the MLR order (and hence also in the FOSD order). To see that

F n,m ≻ F n,m+1, use (24) to observe that

fn,m(l)

fn,m+1(l)
= h(n,m) ·

f(l + n)
(
l+n
n

)
(1− ρ)lm

f(l + n)
(
l+n
n

)
(1− ρ)l(m+1)

= h(n,m) · 1

(1− ρ)l
,

where h(n,m) is a function independent of l. Hence, fn,m(l)/fn,m+1(l) is increasing in l, as

claimed. Finally, the fact that the posterior F n,m becomes worse (in the MLR and hence FOSD

sense) as m increases implies that IS(m,n) is decreasing in m. This follows from the recursive

structure of the search index (Theorem 1, Part (2)). In particular, recall that the search index

maximizes the expected discounted payoff per unit of expected discounted time, which is clearly

higher the better the distribution F n,m (in the sense of MLR, and hence, FOSD), i.e., the higher

the number of firms that the next search is expected to identify.

To establish Part (3), we now show that the search index IS(m,n) is decreasing (respectively,

increasing) in n if F is UL-concave (respectively, UL-convex). Fix m ∈ N. Suppose F is UL-

concave. Then F n,m ≻ F n+1,m because

fn,m(l)

fn+1,m(l)
= h̃(n,m) ·

f(l + n)
(
l+n
n

)
(1− ρ)lm

f(l + n+ 1)
(
l+n+1
n+1

)
(1− ρ)lm

= h̃(n,m) · n+ 1

L(l + n)
,

where h̃(n,m) is a function independent of l. Since F is UL-concave, L(l + n) is decreasing

in l, which means fn,m(l)/fn+1,m(l) is increasing in l. Hence, F n,m ≻ F n+1,m. This also means
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that, for any m ∈ N and any n, n′ ∈ N with n′ > n, F n,m ≻ F n′,m. Arguments similar to those

establishing Part (2) then imply that the search index is decreasing in n. An analogous argument

establishes that, when F is UL-convex, for any m ∈ N and n, n′ ∈ N, with n′ > n, F n′,m ≻ F n,m.

Hence, in this case, the search index is increasing in n. ■

Proof of Lemma 3. Observe that, given the state ωP = (c, ϑs−1) of each firm in the mechanism

with cost c (revealed through bidding), the firm’s index is

IP
x (c, ϑ

s−1) =

q − γx(c) if ϑs−1 s.t. ϑl = 1 for some l ≤ s− 1

qx(c; s) otherwise,

where, for any c, γx(c) = c if x = W and γx(c) = γ(c) if x = PR, and where, for any c and

any a ∈ N, qx(c; a) is a function decreasing in both the firm’s cost c and the number of times a

the firm has been used without delivering a positive flow payoff. Clearly, Ax(c;m,n) = sup{a :

qx(c; a) ≥ IS
x (m,n)}.

Part (1) follows from the fact that IS
x (m,n) is decreasing in m and IP

x (c, ϑ
s−1) is decreasing

in c and, when ϑs−1 is such that ϑl = 0 for all l ≤ s− 1, IP
x (c, ϑ

s−1) is decreasing in s. Part (2)

follows from the same properties together with the fact that IS
x (m,n) is decreasing (respectively,

increasing) in n when F is UL-concave (respectively, UL-convex). ■

Proof of Proposition 2. The result follows from Lemma 3. ■

Proof of Proposition 3. Because S̊ = (ω̊S, S̊P ) and S = (ωS,SP ) are such that n̊ = n but

m̊ > m, by virtue of Lemma 2, IS
x (m̊, n̊) < IS

x (m,n). On the other hand, for any ωP = (c, ϑs−1),

S̊P (ωP ) = SP (ωP ), meaning that the composition of the CS is the same under both states S̊ and

S. The latter property implies that the index IP
x of each firm in the CS is the same under S̊

and S. Lastly, observe that the arguments in the proof of Lemma 2 imply that the distribution

describing the outcome of future expansions is less favorable starting from ω̊S than starting from

ωS (future expansions are expected to identify fewer firms, in the MLR order, whereas the cost

of each joining firm is drawn independently of the number of firms identified). Jointly, the above

properties, together with the fact that, for both x = W and x = PR, the buyer’s policy is

the index one of Theorem 1, imply that Qx(c; S̊) ≥ Qx(c;S). That is, the expected discounted

number of times the firm supplies is greater when the state of the procurement mechanism at the

end of the period the firm joins is S̊ than when it is S. That the firm’s expected profits are also

higher under S̊ than under S follows from this property together with the fact that the firm’s

profits are Tx(c; S̊) in the former case and Tx(c;S) in the latter case, for x = W,PR. ■
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Proof of Lemma 4. As established in the proof of Lemma 3,

Ax(c;m,n) = sup{a : qx(a, c) ≥ IS
x (m,n)},

where qx(a, c) is the index of a firm with cost c that, after being utilized a times, never delivered

a satisfactory service.

Observe that qW (a, c) − qPR(a, c) = G(c)/g(c). Furthermore, IS
PR(m,n) = IS

W (m,n) −
y(G,m, n), where y(G,m, n) is a function of the distribution G and of (m,n).

For small c, qW (a, c)−qPR(a, c) is small, and hence qW (a, c)−IS
W (m,n) > 0 implies qPR(a, c)−

IS
PR(m,n) > 0. Because qW and qPR are decreasing in a, APR(c;m,n) > AW (c;m,n). Further-

more, because qW (a, c) − qPR(a, c) is increasing in c while IS
W (m,n) − IS

PR(m,n) is invariant in

c, there exists a ĉ such that

(
qW (a, c)− qPR(a, c)−

(
IS
W (m,n)− IS

PR(m,n)
))

· (c− ĉ(m,n)) ≥ 0.

Note that, by the recursive properties of the search index in Part (2) of Theorem 1,

0 < IS
W (m,n)− IS

PR(m,n) <
G(c̄)

g(c̄)
.

Hence, the equation

qW (a, c)− qPR(a, c)−
(
IS
W (m,n)− IS

PR(m,n)
)
= 0

admits a solution ĉ(m,n) ∈ (c, c̄).

Suppose c < ĉ(m,n). Then qW (a, c)− qPR(a, c) < IS
W (m,n)− IS

PR(m,n), which means that

if qW (a, c)− IS
W (m,n) ≥ 0 then qPR(a, c)− IS

PR(m,n) ≥ 0. This means that ∆(c;m,n) ≤ 0.

Next, suppose c > ĉ(m,n). Then qW (a, c)− qPR(a, c) > IS
W (m,n)− IS

PR(m,n), which means

that if qPR(a, c)− IS
PR(m,n) ≥ 0 then qW (a, c)− IS

W (m,n) ≥ 0. Hence ∆(c;m,n) ≥ 0. ■

Proof of Proposition 4. The result follows from Lemma 4. ■

47


	Introduction
	Related literature 

	Model
	Optimal policy and key implications
	Optimal policy
	Implications for dynamics of exploration and CS expansion

	Discussion
	Application: Experimentation and Solicitation in Sequential Procurement Auctions
	Environment 
	Profit- and Welfare-Maximizing Mechanisms
	Dynamics under Optimal Mechanisms
	Preliminaries
	Positive Implications
	Normative Implications


	Conclusions

