Searching for “Arms”: Experimentation with
Endogenous Consideration Sets®

Daniel Fershtman' Alessandro Pavan?

July 2025

Abstract

A decision-maker alternates between exploring alternatives in a consideration set and
searching for new ones. The problem admits an index solution, featuring a novel recursive
index for the expansion of the consideration set. When the expansion technology is station-
ary or improving, newly discovered alternatives replace existing ones. When it deteriorates,
previously discovered alternatives are revisited, and each expansion is effectively treated as
the last. We apply the results to the design of procurement mechanisms in environments
where a buyer faces uncertainty about the number, costs, and quality of potential suppli-
ers, and must trade off learning about existing suppliers against soliciting new ones. On
the positive side, the analysis shows that firms discovered later in the process enjoy higher
expected profits, all else equal, and it identifies primitive conditions under which the buyer
becomes more (or less) lenient with incumbents after each expansion. On the normative
side, the analysis reveals that low-cost firms contribute to inefficient entrenchment with
incumbents, whereas high-cost firms contribute to excessive solicitation.
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1 Introduction

Classic models of sequential experimentation or learning typically involve a decision-maker (DM)
who explores a fixed set of alternatives with unknown characteristics. In many dynamic envi-
ronments, however, the set of feasible alternatives is expanded over time as the DM gathers
information about the alternatives already in her consideration set (CS).

In this paper, we study the tradeoff between exploring alternatives already in the CS and
expanding the CS through costly search. A key distinction between exploration and CS expansion
lies in their directness. The DM can “point to” and select a particular alternative within the CS
for exploration. In contrast, she cannot target specific alternatives outside the CS for inclusion
and evaluation. This inability may stem from inherent randomness in the search process, whereby
the alternatives discovered may differ from those the DM intended to find. Alternatively, search
may produce batched arrivals, and the expected composition of each batch may shape the DM’s
expansion decisions. Finally, the DM may be uncertain about the distribution of alternatives
outside the CS or the efficacy of the search process itself, and may update her beliefs about the
underlying search technology based on past outcomes.

To analyze the tradeoff between exploring alternatives already in the CS and expanding it,
we study a generalization of the classic multi-armed bandit problem in which the set of “arms”
is endogenous. Pulling an arm—i.e., exploring an alternative already in the CS—yields a flow
payoff and generates information about the arm’s characteristics, such as the distribution from
which payoffs are drawn. Uncertainty is resolved gradually, with each arm potentially requiring
repeated exploration before its attributes are fully revealed. Expanding the CS—i.e., engaging in
search—entails a cost and results in the arrival of a random set of new arms whose characteristics,
learned upon arrival, may depend on past search outcomes.

We show that the solution to the problem takes the form of an index policy. Each alternative
in the CS is assigned a history-dependent number—its index—which depends only on the state
of that alternative. This index coincides with the one introduced by Gittins and Jones’ (1974)
in the classic bandit problem with a fixed set of arms. In addition, the decision to expand the
consideration set (i.e., to search) is also assigned an index, which depends on the state of the
search technology. This state summarizes the outcomes of past searches and the DM’s beliefs
about the stochastic process governing the arrival of new alternatives. Crucially, the search index
is independent of the information generated by the exploration of any specific alternative already
in the CS. While distinct from the value the decision-maker attaches to expansion, the search
index is linked to the expected indexes of the alternatives that future searches may uncover. We
provide a recursive characterization of the search index and use it to derive many of our results.
The optimal policy prescribes choosing, in every period, the option—either an alternative in the
CS or search—with the highest index.



Our environment can be viewed as a special case of the branching bandit problem studied
in the operations research literature, where activating certain arms causes them to disappear
and generates a set of new arms (see, e.g., Weiss, 1988, Weber, 1992, and Keller and Oldale,
2003). In our setting, the decision to expand the CS corresponds to activating a branching arm
that yields negative rewards (i.e., search costs) and brings a stochastic set of new alternatives,
drawn from a distribution that depends on past search outcomes. Our proof of indexability
departs from previous work by leveraging a novel recursive characterization of the search index.
This formulation facilitates computation and reveals key dynamic properties of the exploration-
expansion tradeoff with relevance for economic applications.

First, at any point in time, the decision to expand the CS depends on the current set only
through (i) the index of the alternative with the highest value, and (ii) the state of the search
technology. This is true even though the opportunity cost of search—that is, the value for-
gone by suspending exploration—depends on the entire history of exploration outcomes and
past expansions. Likewise, conditional on forgoing search, the decision of which alternative to
explore depends solely on each alternative’s individual state and is independent of the search
technology—even when newly discovered alternatives may resemble some current alternatives
more closely than others.

Second, if the search technology is stationary or improving (in a sense formalized below),
alternatives present at the time of expansion are never explored again. In effect, each search
replaces the current CS with a new one.

Third, when the search technology deteriorates—e.g., because the DM becomes pessimistic
about the likelihood of discovering valuable alternatives—the current set is not discarded but
put on hold. Alternatives may be revisited after the expansion, and the decision to expand is
made as if no further expansions will take place thereafter.

These properties can be viewed as generalizations of the classic independence of irrelevant
alternatives (ITA) property from multi-armed bandit problems. What sets the present setting
apart from the standard model enriched with a “meta” arm—representing the collection of al-
ternatives that search brings into the CS—is that evaluating such a meta arm requires solving a
nested dynamic problem. Specifically, doing so involves determining not only whether to activate
the arm but also how to explore the alternatives it yields over time and how to alternate between
exploring them and expanding the CS further. In other words, the selection of the meta search
arm also involves the choice of “how to use it” and not merely “for how long to use it”. Dynamic
problems of this kind, in which arms encapsulate future decision processes, seldom admit an
index solution. See also the discussion in Section 4.

The framework developed in this paper applies to a broad class of experimentation and se-
quential learning problems. As an illustrative application, we study the design of sequential

procurement mechanisms. In many settings, buyers face uncertainty not only about the quality



and cost of goods or services, but also about the composition of the supplier pool. A salient ex-
ample is that of local municipalities that repeatedly procure infrastructure, waste management,
and other public services from a shifting set of vendors. These agencies expand their pool of po-
tential suppliers gradually over time—through advertising campaigns, public tenders, or requests
for proposals (RFPs)—each of which incurs administrative costs and generates a stochastic inflow
of new bidders. Suppliers’ costs are revealed at bidding, while service quality is learned through
repeated interaction. The key tradeoff faced by the buyer—between experimenting with known
suppliers and incurring costs to identify new ones—maps naturally into our multi-armed bandit
model with an endogenous CS.

We use the model to characterize the properties of the optimal procurement mechanism in
such environments. Assuming that each supplier’s cost of service provision is privately known,
we derive novel implications for the inefficiencies that arise in the solicitation process under profit
maximization—that is, when the DM seeks to maximize buyer surplus rather than total welfare.

On the positive side, we identify primitive conditions under which, following each expansion,
the buyer becomes more (or less) lenient toward incumbent suppliers—that is, more (or less)
willing to tolerate unsatisfactory performance before initiating further search. This translates
into a delay (or acceleration) in the expansion of the CS. We also show that, all else equal—that
is, fixing the number of competitors, their costs, and the history of experimentation—suppliers
who enter the mechanism at later stages earn higher profits than earlier entrants. In other words,
the mere delay in their discovery is good news for new entrants.

On the normative side, we show that all suppliers, regardless of type, contribute to inefficien-
cies in both solicitation and experimentation, albeit in systematically different ways. Specifically,
low-cost firms tend to induce inefficient delays in the expansion of the vendor pool, resulting in
excessive entrenchment with incumbents. Formally, these firms are tolerated through an ineffi-
ciently large number of unsatisfactory performances before the buyer initiates the search for new
suppliers. Conversely, high-cost firms lead to an inefficiently rapid expansion of the CS: they
are given too few chances to deliver satisfactory service before the solicitation of new firms. To
the best of our knowledge, these normative and positive implications are novel and, in principle,
open to empirical investigation.

Our framework accommodates general search (i.e., CS expansion) and exploration technolo-
gies. In particular, it allows for gradual resolution of uncertainty regarding the alternatives
already in the CS—following the classic structure in Gittins and Jones, 1974—as well as flexible,
history-dependent processes governing the discovery of new alternatives. This generality is es-
sential for capturing applications such as the sequential procurement setting discussed above, in
which each alternative must be explored over multiple periods, the DM alternates across multiple
options, and beliefs about the returns to CS expansion evolve endogenously based on prior search

outcomes.



Outline. The rest of the paper is organized as follows. The remainder of this section reviews
the relevant literature. Section 2 presents the model. Section 3 characterizes the optimal policy
and highlights key properties of the dynamics of experimentation and CS expansion. Section 4
discusses indexability and considers generalizations beyond those captured in Section 2. Section
5 contains the application to procurement. Section 6 concludes. All proofs are contained in
the Appendix. Additional material is provided in an online Supplement. In particular, the
Supplement shows how the indexability result extends to certain decision problems in which the
DM, in addition to learning about existing alternatives and searching for new ones, can, or must,
irreversibly commit to an option, thus ending the exploration process. As an illustration, we
show how Theorem 1 and Proposition 1 can be used to solve an extension of Weitzman’s (1979)
Pandora’s box problem, in which the set of boxes is gradually constructed over time via a general

search technology.
1.1 Related literature

To the best of our knowledge, the problem analyzed in this paper—where the DM alternates
between exploring “arms” already in the CS and stochastically expanding the latter—is novel.
As noted above, this setup can be viewed as a special case of the branching problems studied
in the operations-research literature (see, e.g., Weiss, 1988, Weber, 1992, and Keller and Oldale,
2003). Our contribution includes a new proof of indexability, based on a novel recursive charac-
terization of the search (i.e., CS expansion) index. This characterization exploits a classification
of alternatives into “categories,” which summarize all features relevant to the dynamics of the CS
expansion technology. This recursive structure not only facilitates computation of the index but
also underpins the key results that follow.

This paper is also related to a large body of work on experimentation and sequential learning
with an exogenous choice set—see, for example, Weitzman (1979), Austen-Smith and Martinelli
(2018), Fudenberg, Strack and Strzalecki (2018), Gossner, Steiner and Stewart (2021), Ke and
Villas-Boas (2019), and Ke, Shen, and Villas-Boas (2016)." In these papers, the DM acquires
costly information about a fixed set of alternatives before stopping and selecting one. Related
contributions include Che and Mierendorff (2019), who study optimal sequential allocation of at-
tention to two biased signal sources, and Liang, Mu, and Syrgkanis (2022), who analyze dynamic
information acquisition about an unknown Gaussian state. In all of these models, however, the
set of alternatives is fixed from the outset. By contrast, in our framework the DM endogenously
expands the choice set in response to accumulated information about existing alternatives. Also
related are Garfagnini and Strulovici (2016) and Carnehl and Schneider (2023). The former

1See also Bergemann and Viliméki (2008) for an overview of economic applications of multi-armed-bandit
problems.



studies forward-looking experimentation with endogenous technologies, where trying “radically”
new technologies reduces the cost of experimenting with similar ones, effectively expanding the
set of affordable options. The latter examines the time-risk tradeoff faced by a DM who chooses
between implementing an existing method or developing a new one under a deadline. While
these papers also consider environments in which the choice set expands over time, both their
modeling approaches and substantive questions differ significantly from those in our analysis.

The application in Section 5 contributes to three strands of the literature: procurement,
“bandit auctions,” and bidder solicitation. The bandit auction literature has focused on environ-
ments where the set of bidders—that is, the CS—is fixed over time; see, for example, Bergemann
and Viliméki (2010), Kakade, Lobel, and Nazerzadeh (2013), Pavan, Segal, and Toikka (2014),
and Fershtman and Pavan (2017). In contrast, the auction literature on bidder solicitation has
considered static environments with a single solicitation decision, and has abstracted from ex-
perimentation—for recent contributions, see Lauermann and Wolinsky (2017), Lauermann and
Wolinsky (2025), and references therein. Our analysis contributes a novel angle to these three
literatures by allowing the designer to endogenously expand the pool of bidders over time, based
on the bids and experimentation outcomes of firms already participating in the mechanism.
The resulting dynamics uncover novel positive and normative insights bridging those in these
literatures.

The Pandora’s boxes problem, as introduced by Weitzman (1979), is a special case of the
multi-armed bandit framework characterized by the immediate resolution of uncertainty. In
this sense, it can be viewed as a particular instance of the broader class of bandit problems
with gradual learning, as studied by Gittins and Jones (1974). Despite its many applications,
the Pandora’s boxes framework has seen relatively few extensions in the literature. Notable
exceptions include Olszewski and Weber (2015), Choi and Smith (2016), and Doval (2018)—all
of which assume a fixed set of boxes. A related contribution in the marketing literature is
Greminger (2022), who examines a consumer search problem with an endogenous product set
(i.e., a dynamic set of boxes), focusing on the comparison between directed and undirected search
strategies.

Finally, this paper contributes to the rapidly growing literature on consideration sets (CS).
Eliaz and Spiegler (2011) examine how different (exogenously given) CS influence firm behav-
ior. By contrast, Manzini and Mariotti (2014) and Masatlioglu, Nakajima, and Ozbay (2012)
develop methods to infer CS from observed choice behavior. Caplin, Dean, and Leahy (2019)
provide necessary and sufficient conditions under which rationally inattentive agents optimally
limit attention to a subset of available options, thereby endogenizing the CS. Earlier, Simon
(1955) proposed a model of sequential search in which alternatives are evaluated until one meets
a satisfactory threshold, a behavior that Caplin, Dean, and Martin (2011) later showed to be

optimal under information costs. Our analysis complements this body of work by offering a dy-



namic microfoundation for an endogenous CS. Rather than selecting a CS upfront and evaluating
its elements, the DM gradually expands the CS in response to the exploration outcomes of its

current members.

2 Model

In each period t = 0,1, 2, ..., the DM chooses between exploring one of the alternatives in the
CS and expanding the latter by searching for additional alternatives. Exploring an alternative
generates information about it and yields a (possibly negative) flow payoff. Expanding the CS
yields a stochastic set of new alternatives, which are added to the CS and can be explored in
subsequent periods.

Consideration sets. Denote by C; = (0, ..., n;) the period-t CS, with n; € N.2 C; comprises all
alternatives i = 0, ..., n; that the DM can explore in period ¢, with the initial set Cy = (0, ..., ng)
specified exogenously and with alternative 0 corresponding to the selection of the DM’s outside
option, yielding a payoff equal to zero. Given Cy, expansion of the CS in period ¢ (that is, search)
brings a set of new alternatives Cy1\Cy = (n; + 1, ...,n441) which are added to the current CS
and expand the latter from C; to Cyy;.

Alternatives, categories, learning, and payoffs. Each alternative belongs to a fixed category
¢ € = that is observed by the DM when the alternative is brought to the CS, with the set =
measurable but not necessarily finite. A category contains information about an alternative’s
experimentation technology and payoff process. Let u € R denote a fixed unknown parameter
about the alternative that the DM is learning about, with y drawn from a distribution I'e. When
the DM explores the alternative, she observes a signal realization about u. Let m € N index the
explorations of an alternative, and denote by ¥™~! = (J,)"™;' € R™ its history of past signal
realizations, with 9"~ = () for m = 0.> When the DM explores the alternative for the m-th
time, she receives an additional signal 9,, about it, drawn from some distribution G¢(9™*; 1)
and updates her beliefs about p using Bayes’ rule. Importantly, signal realizations are drawn
independently across alternatives, given the alternatives’ categories. The flow payoff u that the
DM obtains from exploring an alternative from category ¢ with parameter p for the m-th time
is drawn from a distribution Lg¢ (9™ w).

The assumption that £ is observable implies that the distribution I'¢ from which p is drawn
is known to the DM after the alternative’s category ¢ is learned (which occurs at the time the
alternative is brought to the CS). Note, however, that the distribution G¢(9™'; ) from which
the m-th signal ¥, is drawn, as well as the distribution L¢(9™!; 1) from which the m-th reward

is drawn, are not fully known to the DM because they depend on g, which is unknown to the

2We adopt the convention of letting the set N include 0.
3We assume that p and and ¥, are real numbers just for convenience; the results do no hinge on this assumption.
We also label the exploration by m = 0 to ease some of the formulas below.



DM.

The search (i.e., CS expansion) technology. When the DM searches for the k-th time, she
incurs a cost ¢; and discovers alternatives of different categories. Let Ey = (ng(§) : £ € Z) denote
the complete description of the alternatives identified through the k-th search, with ng(§) € N
representing the number of category-¢£ alternatives discovered. Let (¢, Ek)?;)l denote the history
of the past m — 1 search outcomes with (cx, Ey,)i,' = 0 for m = 0. Given (cx, Ex)]", , the m-
th search outcome (¢, Ey,) is drawn from a distribution J((cy, Ex);,) that is independent of
calendar time. The dependence of J on the history of past search outcomes allows us to capture,
for example, learning about the effectiveness of search (e.g., about the number of potential firms
in the market, as in the application in Section 5), as well as changes in the DM’s ability to find
new alternatives (e.g., because of learning by doing and/or fatigue).

The classification of alternatives into categories allows us to keep track of all relevant infor-
mation about the evolution of the search technology. In particular, it allows each search outcome
(both the search cost and the set of new alternatives identified) to be drawn from a distribution
that depends on the composition of the CS while still permitting an index characterization of
the optimal policy. In an environment with an exogenous CS, categories play no role and one
can simply let each alternative belong to its own category. With an endogenous CS, instead,
categories permit us to identify common information among the alternatives in the CS that is
responsible for the outcomes of future searches.

Objective. A policy x for the decision problem described above is a rule specifying, for each
period t, whether to experiment with one of the alternatives in the CS C; or expand the latter
through search. A policy x is optimal if, after each period ¢, it maximizes the expected discounted
sum EX Y77 6°U,|Sy] of the flow payoffs, where § € (0, 1) denotes the discount factor, U, denotes
the flow period-s payoff (with the latter equal to the search cost in case search is conducted in
period s), S; denotes the state of the problem in period ¢ (the latter specifies, for each alternative
in the CS, the history of signals, along with the history of all past search outcomes; see Section 3
for the formal definition) and EX [-|S;] denotes the expectation under the endogenous process for
the flow payoffs obtained by starting from the state S; and following the policy x at each period
s > t. To guarantee that the process of the expected payoffs is well behaved, we assume that,
for any ¢, any S; and any y, 0'"EX[Y "2, §°U,|S;] — 0 as t — oo. This property is immediately
satisfied if payoffs and costs are uniformly bounded; its role is to guarantee that the solution to
the Bellman equation of the above dynamic program coincides with the true value function.

Remark. The model above describes an infinite-horizon experimentation problem (with en-
dogenous set of alternatives) in which payoffs are accumulated alongside learning. However, flow
payoffs and learning need not be intertwined. In Section 4 and in the Supplement we discuss
settings in which the DM sequentially decides between learning about alternatives in the CS and

expanding the CS, until a final choice is made among the alternatives in the CS, ending the



decision problem. For example, Theorem 1 can be used to characterize the optimal policy in
a generalization of Weitzman’s Pandora’s boxes problem where the set of boxes is endogenized
through the DM’s search for new boxes. More generally, the results in Theorem 1 extend to a
broader family of problems where the DM needs to irreversibly stop learning in order to be able

to accumulate rewards; see Section 4 and the Supplement for further details.

3 Optimal policy and key implications

To facilitate the characterization of the optimal policy, we start by introducing the following
notation. Denote by 0 a generic sequence of signal realizations about an alternative; that is, 4 is
given by 9™t = (9,)™ ! for some m. Denote by w?” = (£,6) an alternative’s state, and by QF
the set of all possible states of an alternative.* While the category ¢ is fixed, the history 6 of
past signal realizations changes over time as the result of the information the DM accumulates
about the alternative through past explorations. Similarly, the state of the search technology is
given by the history of past search outcomes, that is, w® = (cx, Ey), for some m. Denote the
set of the possible states of search by Q.

The state of the decision problem is given by the pair S = (w®, ST), where S” is the state of
the current CS; formally, S¥ : QF — N is a counting function that specifies for each possible state
of an alternative w” € QF, the number of alternatives in the CS in that state. Let Q = QP UQ®
and note that O N Q% = (. Denote by S, the state of the decision problem at the beginning of
period t. This representation of the decision problem keeps track of all relevant information in a
parsimonious way and, as will become clear below, greatly facilitates the analysis.

Remark. The time-varying component # of each alternative’s state w?” = (£, ) admits inter-
pretations other than the signals about a fixed unknown parameter p. In particular, all of our
results apply to a broader class of problems where 6 evolves as the result of “shocks” that need not
reflect the accumulation of information. For example, such shocks may reflect endogenous vari-
ations in preferences, as in certain habit-formation or learning-by-doing models. Furthermore,
because no assumptions are made on the distributions L¢ (915 1) and Ge(9™ % p) from which
the payoffs and the signals are drawn, the analysis accommodates for cases where payoffs them-
selves carry information, as well as cases where information arrives without any accompanying

rewards.
3.1 Optimal policy

We now characterize the optimal policy and discuss its implications for the dynamics of exper-

imentation and CS expansion. Recall that a policy y for the decision problem above specifies,

4The initial state of each alternative from category £, before the DM explores it, is (£,0). The superscript P
in w” is meant to highlight the fact that this is the state of a “physical” alternative in the CS, not the state of
the search technology, or the overall state of the decision problem, defined below.



for each period t and each period-t state S;, whether to experiment with one of the alternatives
in the CS or expand the latter through search. Clearly, because the entire decision problem is
time-homogeneous (independent of calendar time), so is the optimal policy. That is, for any two
periods ¢ and t' such that S; = Sy, the decisions specified by the optimal policy for the two

periods are the same.
For each state w” of an alternative, let

7—1 ¢ P
IP(wP) = sup]E [ZS:O Otale }

>0 E[52755 0%l ] W

denote the “index” of each alternative in the CS in state w”. The definition in (1) is equivalent
to the one in Gittins and Jones (1974). The expectations in (1) are under the process obtained
by selecting the given alternative in all periods. The process 7 in (1) is a stopping time (that
is, a rule prescribing when to stop, as a function of the observed signal realizations). The flow
payoff ug in (1) is the one generated by the s-th exploration and, depending on the application,
can be either positive or negative. As is well known, the optimal stopping rule in the definition
of the index is the first period (after the one at which the index is computed) at which the index
falls weakly below the value at the time the index was computed (see, e.g., Mandelbaum, 1986).

Given each state S = (w®, ST) of the decision problem, let
T (SP) = manPE{wPEQP:SP(@P)>O}I(wp).

denote the maximal index among the alternatives within the CS.

We now define an index for search (i.e., expansion of the CS). Analogously to the indexes
defined above, the index for search is defined as the maximal expected average discounted net
payoff, per unit of expected discounted time, obtained between the current period and an optimal
stopping time. Contrary to the standard indexes, however, the maximization is not just over the
stopping time, but also over the rule governing the selection among the new alternatives brought
to the CS by the current and further searches as well as the decision of when to further expand
the CS. Denote by 7 a stopping time, and by 7 a rule prescribing, for any period s between the
current one and the stopping time 7, either the selection of one of the new alternatives brought
to the CS by search or further search. Importantly, 7 selects only among search and alternatives

that are not already in the CS when the decision to search is made.’

5Suppose the index for search is computed in period ¢ when the state of the search technology is w®. Then,
for each period t < s < 7, 7 selects between further search and the selection of alternatives in the CS at period s
that were not in the CS in period ¢.



Formally, given the state of the search technology w®, the index for search is defined by

E [z;;l 58U5\w5}
T%(w”) = slp - [Egi_é 58[0)5}

(2)

where U, denotes the flow payoff from the s-th decision taken under the rule 7 (with this decision
taking the form of further search — in which case Uy is the stochastic cost of search — or exploration
of one of the alternatives brought to the CS by searches following the one for which the index
is computed, in which case U, is the stochastic payoff associated with the exploration of the
alternative), and where the expectations are under the process generated by the rule 7.

Definition 1 (Index policy). The index policy x* selects at each period t the option with the
greatest index given the overall state S; = (w¥,8F) of the decision problem: search if I°(w®) >
Z*(8?), and an arbitrary alternative with index T*(S?) if T°(w®) < I*(SF).

Ties between alternatives are broken arbitrarily. In order to maintain consistency throughout
the analysis, we assume that, when Z°(w?) = Z*(ST), search is carried out. To characterize the
optimal policy, we first introduce the following notation. For any v € R, let x(v) € N U {o0o}
denote the first time at which, when the DM follows the index policy x*, (a) the search technology
reaches a state in which its index is no greater than v, and (b) all alternatives in the CS —
regardless of when they were introduced into it — have an index no greater than v. That is, x(v)
is the minimal number of periods until all indexes are weakly below v (k(v) = oo if this event
never occurs).b
Let V*(Sp) = (1 —0) sup, EX[> 72 6'U;|So] denote the supremum expected per-period payoff

the DM can attain across all feasible policies x, given the initial state S;.
Theorem 1 (Optimal policy).

1. The index policy x* s optimal in the sequential experimentation problem with endogenous

CS described above.

2. The index for search (i.e., CS expansion), as defined in (2), satisfies the following recursive

characterization. For any w® € Q,
EX [ S75! 0°UwS |

O ]

3)

where T is the first time (strictly after the one at which the index is computed) at which T°

and the indexes of all the alternatives brought to the CS by the current and future searches

SNote that between the current period and the first period at which all indexes are weakly below v, if the DM
searches, new alternatives are added to the CS, in which case the evolution of their indexes is also taken into
account in the calculation of k(v).
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fall weakly below the value T°(w?¥) of the search index at the time the latter is computed,

and where all the expectations are under the process induced by the index policy x*.

3. The DM’s expected (per-period) payoff under the index policy x* is equal to

/0 b (1 ~EX [5”<”>|80]) dv. (4)

As in the classic multi-armed bandit problem with an exogenous CS, independence across
alternatives is the key assumption behind the optimality of the index policy. That is, the payoffs
(and the signals) from the various alternatives are drawn independently across the alternatives,
given the latter’s categories, and the set of new alternatives brought to the CS at each expansion
is invariant in the signals generated by the past explorations of the individual alternatives in
the CS. Under such assumptions, the theorem establishes a generalization of the index Theorem,
according to which selecting in each period the alternative, or search, with the highest index is
optimal.

Part (2) characterizes the stopping time in the index of search by exploiting its recursive
formulation. It uses the fact that the rule (for the selection of the alternatives brought to the
CS by current and future searches and for the timing of future CS expansions) maximizing the

expected payoff per unit of expected discounted time starting from the state w?® is itself an index
s

Y

rule. This implies that the optimal stopping in the definition of the search index, starting from w
occurs the first moment at which the index of each new alternative brought to the CS by current
and future searches as well as the value of the search index itself fall weakly below the value of
the search index Z°%(w®) at the time the latter is computed (i.e., before launching the current
search, starting from w®). Such a recursive representation, the validity of which we establish in
the proof of Theorem 1 in the Appendix, facilitates an explicit characterization of the index in
applications, and permits us to identify various properties of the dynamics of experimentation
and CS expansion that are useful in applications and for our proof of indexability.

Finally, Part (3) offers a convenient representation of the DM’s payoff under the optimal rule
that can be used, among other things, to determine the DM’s willingness to pay for changes in
the search technology with limited knowledge about the details of the environment (see also the
discussion in the next subsection). Because all indexes represent expected payoffs per expected
discounted unit of time, the integral (over all values v) of the time it takes for all indexes to
fall below v is a concise statistic of all the signal and reward processes responsible for the DM’s

payoff under the optimal rule.
3.2 Implications for dynamics of exploration and CS expansion

We first describe a few properties that the search technology may satisfy.
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Definition 2 (Search technology). (i) A search technology is stationary if, given any two
states of the search technology w® = (¢;, E;)J-, and &° = (éj,Ej)?‘:O, J(w®) = J(@%). (i) A
search technology is deteriorating if, given any state w® = (cj,Ej)}”:O and subsequent state
0% = ((¢j, Bj)p, (¢, Ej)e 1), my s €N, the distribution J(w®) first-order stochastically dom-
inates the distribution J(w®). (iii) A search technology is improving if, for any state w® and

subsequent state @°, as defined in Part (ii), J(&°) first-order stochastically dominates J(w®).”

The next result uses the recursive characterization in Theorem 1 to identify various properties

of the dynamics of exploration and CS expansion, which are useful in applications.
Proposition 1 (Dynamics of exploration and CS expansion).

1. Invariance of expansion to CS composition: At any period, the decision to expand
the CS depends on the state S = (w¥,ST) of the system only through the value T*(S?) of
the alternative with the highest index, and the state w® of the search technology.

2. Independence of irrelevant alternatives: At any periodt, for any pair of alternatives
1,75 € Cp with i # j, the choice between exploring alternative i or exploring alternative j is

invariant to the period-t state w® of the search technology.

3. Possible irrelevance of improvements in search technology: An improvement in
the search technology increasing the probability of finding alternatives of positive expected
value (vis-a-vis the outside option) need not affect the decision to expand the CS even at
histories at which, prior to the improvement, the DM is indifferent between expanding the

CS and exploring one of the alternatives already in it.

4. Stationary value function: If the search technology is stationary, for any two states S,
S at which the DM expands the CS, V*(S) = V*(S).

5. Stationary replacement: If the search technology is stationary or improving and search
is carried out at period t, without loss of optimality, the DM never comes back to any

alternative in the CS at period t.

6. Single search ahead: If the search technology is stationary or deteriorating, at any
history, the decision to expand the CS is the same as in a fictitious environment in which

the DM expects she will have only one further opportunity to search.

"That is, the search technology is deteriorating if, regardless of the outcome of past searches, for any k and
any upper set A C R x NIZl (that is, any set A C R x NIZI such that for each ay,as € R x NIFl with ay > a4,
az € Aif a; € A), one has that Pr((—cx41, Fry1) € A) < Pr((—ck, Ex) € A). This definition is quite strong. In
more specific environments, where there is an order on the set of categories =, weaker definitions are consistent
with the results below.
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7. Pricing formula: Consider two states Sy = (S¥,w®) and Sy = (SF, &%) that differ only
in terms of the state of the search technology. The DM’s willingness-to-pay to change the

state of the search technology from w® to &° is equal to

PSP, w5 o) = / h (E[501(s”.0%)] ~E [#0)(s".w)]) o,
0

Part (1) of the proposition is an implication of Theorem 1. The result is not trivial because
the opportunity cost of expanding the CS (i.e., the value of continuing with the current CS)
typically depends on the entire state S of the problem, beyond the information contained in
Z*(S8?) and w?.

Part (2) also follows from Theorem 1. Starting with each period ¢, the relative amount of
time the DM spends on each pair of alternatives in the period-t CS is invariant to the type of
alternatives the DM expects to find by expanding the CS. This is true despite the fact that
further expansions of the CS may bring alternatives that are more similar to one alternative than
the other.

Part (3) follows from the fact that improvements in the search technology need not imply
an increase in the index of search. This is because, as shown in Part (2) of Theorem 1, the
optimal stopping time in the index of search is the first time at which the index of search and
the indexes of all alternatives brought to the CS by the current and future searches fall weakly
below the value of the search index at the time the current search is launched. As a result, any
improvement in the search technology affecting only those alternatives whose index at the time
of arrival is below the value of the search index at the time search is launched does not affect
the value of the search index, and hence the decision to expand the CS. This is true even if these
alternatives are explored with positive probability under the optimal rule.

Part (4) of the proposition says that, when the search technology is stationary, the continua-
tion value when search is launched is invariant to the state of the system S at the time search is
launched. This follows from the fact that, without loss of optimality, the DM never comes back
to any alternative in the CS after search is launched and the outcome of any future search is
invariant in S.

For Part (5), note that, because the state of an alternative changes only when the DM selects
it, if, in period ¢, Z%(w®) > Z*(ST), under a stationary or improving search technology, the same
inequality remains true in all subsequent periods. Hence, in this case, search corresponds to
disposal of all alternatives in the current CS. Each time the DM searches, she starts fresh.

Part (6) follows again from the recursive characterization of the stopping time in the index
of search, as per Part (2) of Theorem 1. Recall that this time coincides with the first time at
which the index of any physical alternative brought to the CS by the current or future searches,

and the index of search itself, drop weakly below the value of the search index at the time the
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current search is launched. If the search technology is stationary, or deteriorating, the index of
search falls (weakly) below its current value immediately after search is launched. Hence, Z°(w®)
is invariant to the outcome of any search following the current one, conditional on w?.

Part (7) follows from Part (3) in Theorem 1, and can be used to price changes in the search
technology, with limited knowledge about the details of the environment. To see this, suppose
that the econometrician, the analyst, or a search engine, have enough data about the average
time it takes for an agent with an exogenous outside option equal to v € R, to exit and take the
outside option, under different search technologies. Then by integrating over the relevant values
of the outside option one can compute the maximal price P*(SF, w®, &%) that the DM is willing

to pay to change the state of the search technology from w® to &°.

4 Discussion

Indexability and “meta-arms.” Indexability of the optimal policy is not obvious in our setting
because search acts as a meta-arm—an action that opens up multiple downstream possibilities
(over and above the length of utilization). Specifically, choosing to search not only involves
selecting an arm but also specifying how to use it—whether to explore one of the physical
alternatives it brings into the CS or to continue searching. While our results establish that
search can effectively be treated as a meta-arm endowed with its own index, this outcome is not
a priori guaranteed. Indeed, in many problems where actions correspond to meta-arms—that
is, subproblems with their own internal decisions (sometimes called super-processes)—an index
solution generally does not exist, even when subproblems are independent and their solutions
known. Similarly, correlation or dependence among alternatives often precludes indexability,
even when subsets evolve independently of one another and optimal within-subset decision rules
are known.

To see why multi-armed bandit problems in which alternatives take the form of meta-arms
typically do not admit an index solution, consider the following extension of the environment
described in Section 2. Suppose there are k € N distinct sets of arms, Ki,..., Kx. Arms in
different sets evolve independently, but arms within a given set may have interdependent states.
More generally, suppose each arm is a meta-arm: activating it triggers a distinct decision process
that involves not just timing (i.e., when to stop), but also how to act across multiple stages.
Assume that each meta-arm evolves independently of the others and that the optimal decision
rule for each meta-arm can be computed in isolation.

It might then be tempting to conjecture that one could assign an independent index to each
meta-arm (or to each arm set K;) and solve the overall problem via an index policy—that is, by
selecting the meta-arm with the highest index in each period. However, this intuition fails. Even
when arms (or sets of arms) are independent in the standard probabilistic sense, the internal

complexity of the decision process within each meta-arm can prevent the existence of a global
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index policy. In other words, independence across meta-arms is not sufficient for indexability
when the arms themselves are structured decision problems. The following example illustrates
this failure.

FEzxample. There are two arms. Arm 1 yields a reward of 1,000 when pulled for the first time.
In all subsequent pulls, it yields a reward of A, where A € {1, 10} is initially unknown and drawn
with equal probability. The value of X is revealed with certainty after the first pull and remains
fixed thereafter.

Arm 2 is a meta-arm that corresponds to a sub-decision problem. When this arm is pulled

for the first time, the DM must also choose one of two modes of operation:

e 2(A): The arm yields a reward of 100 for one period only, and then becomes inactive (i.e.,

no rewards thereafter).
e 2(B): The arm yields a reward of 11 in each period it is pulled, indefinitely.

Crucially, the choice between 2(A) and 2(B) must be made upon the first activation of Arm 2
and is irreversible.

Assume a discount factor § = 0.9. The optimal policy is as follows:
e In period 1, pull Arm 1.

e If A = 10, then pull Arm 2 in version 2(A) for one period (yielding 100), and revert to Arm

1 in all subsequent periods.
e If A\ =1, then switch to Arm 2 in version 2(B) and continue pulling it indefinitely.

This strategy is optimal but clearly not implementable via an index policy. Under an index
policy, each arm is assigned a numerical index that is independent of the state or outcome of
other arms, and the highest-indexed arm is pulled in each period. In this example, however,
the optimal choice of how to use Arm 2—whether to activate it in mode 2(A) or 2(B)—depends
on the outcome of Arm 1’s first pull. Thus, the optimal utilization of one arm is contingent on
information obtained from another, violating the separability required for indexability.

This example illustrates the broader point: when arms are meta-arms with internal decision
processes, even full independence across arms and knowledge of the optimal utilization of each
meta-arm in isolation are not sufficient to guarantee that the optimal policy for the entire problem
takes the form of an index rule.

Stopping and irreversible choice. In many decision problems, the DM faces not only the
task of learning about existing options and searching for new ones, but also the possibility—or
necessity—of irreversibly committing to one of the alternatives, thereby ending the exploration
process. In general, such problems do not admit an index solution. In the Supplement, we

provide a sufficient condition under which the optimality of an index policy extends to these
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settings. Specifically, we assume that each alternative of category & must be explored at least
M¢ > 0 times before the DM is allowed to commit to it. For instance, a hiring committee may
need to collect a minimum number of positive signals about a candidate’s qualifications before
making an offer, or a consumer might need to visit a vendor’s website at least once to complete
a transaction.

The sufficient condition ensures that, once an alternative reaches a state in which commit-
ment is feasible, its retirement value—i.e., the value of irreversibly selecting it—either (i) falls
below the value of the outside option (e.g., when a candidate is revealed to be unqualified), or
(ii) increases (weakly) with additional exploration. This property is reminiscent of a condition
identified in Glazebrook (1979), who establishes the optimality of index policies in a class of ban-
dit problems with stoppable processes. Our proof, however, differs in that it explicitly accounts
for the endogenous evolution of the set of alternatives over time.

A special case of the problem described above arises when exploring an alternative reveals its
value immediately. In this case, the setting reduces to the well-known Pandora’s boxes problem,
but with an endogenous (time-varying) set of boxes. We now show how the results from Theorem
1 and Proposition 1 can be used to solve an extension of Weitzman’s problem in which the set
of boxes evolves over time in response to the outcomes of past explorations. In this extended
problem, each alternative corresponds to a “box” that belongs to a category £ € =. Each category
€ is associated with a pair (F¢ ), where F*¢ is the distribution from which the box’s prize v
is drawn, and \¢ is the cost of inspecting (i.e., opening) the box. As in Weitzman’s original
formulation, each box’s prize v is drawn independently (conditional on the category) and is
revealed upon first inspection.

At each period, the DM can choose one of three actions: (a) search for additional boxes to
add to the current CS; (b) open one of the boxes already in the CS to reveal its prize; or (c¢) stop
and either recall the prize from one of the previously opened boxes or take the outside option
(whose value is normalized to zero). Either choice in (c¢) brings the decision process to an end.

For simplicity, assume that each search yields exactly one new box. The category ¢ of the
box is drawn from the set = according to a distribution p(m) € A(Z), which may vary with the
number of past searches but is independent of the realizations of those searches. The draws from
the distributions p(m) are independent across searches.®

We assume that = C N, with higher ¢ denoting superior boxes, in the sense that, for any
¢ € Zwith & > ¢, F& =posp F& and A& < A& (with one of the two relationships strict).

Let £ = inf Z and £ = supE. The cost of the m-th expansion of the CS is ¢(m), where c(-) is a

8Note that, even though each search yields exactly one new arm, the problem cannot be reduced to a standard
multi-armed bandit formulation by treating each search as the first pull of a newly arrived arm. The key reason
is that the outcome of this initial “pull” depends on the number of arms previously explored, thereby violating a
central condition for indexability in the standard bandit framework—mnamely, that the evolution of each arm be
independent of the history of other arms.
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positive and increasing function. In addition, we assume that, for all m, p(m) =rosp p(m + 1);
that is, the distribution p(m) € A(E) from which the category of the m-th box is drawn first-
order-stochastically dominates, weakly, the distribution p(m+1) € A(Z) from which the category
of the (m+1)-th box is drawn. The combination of the assumption that ¢(m) is weakly increasing
in m and the distribution p(m) € A(Z) from which the boxes are drawn “decreases” with m in a
FOSD sense implies that the index of search Z°(m) defined below is decreasing in m and can be
characterized using the same recursive properties as when the search technology deteriorates in
the sense of Definition 2 (as per Part (6) of Proposition 1). We denote by p*(m) the probability
that the m-th search brings a -box, with .= pS(m) =1 for all m.?

As in the baseline model, the DM discounts the future at rate 9.

The setting described above is one in which the DM’s problem terminates upon choosing to
walk away with the prize from an opened box or the outside option. By contrast, the framework
in Section 2 features an infinite horizon, with the DM continuously choosing among evolving
alternatives. Despite this distinction, the optimal solution to the box problem takes the form of
an index policy closely related to the one in Definition 1 (see Proposition S.1 and its proof in the
Supplement).

The key intuition is that the Pandora’s boxes problem with an endogenously expanding set of
boxes can be mapped into an auxiliary problem that conforms to the general structure analyzed
in Section 1. Theorem 1 and Proposition 1 can then be applied to characterize the structure of
the optimal policy, which we describe next.

For any ¢-box that has not been opened yet (i.e., for which w? = (£, 0)) let the reservation
prize Z? (&, () be given by the solution to:

—A* + 6 [2P e vdF (v)
T

IP(&@) = 14 1(%5 <1 _ e (III(E(%@U)’ (5)

For any | € R, let E(I) = {¢ € 2: ZF(&,0) > 1} denote the set of boxes whose reservation
prize exceeds [. For any m, the reservation prize of search Z°(m) is given by the solution to:!°

clm) 4 8 Senzs ) #50m) (<364 8 [y 05 (1))
7%(m) = . =2 S . (6)
L+ 3 eem(zs (my) P (M) [5 + 55 (1 - F¢ (%))}

The solution to the Pandora’s boxes problem with an endogenously evolving CS takes the fol-
lowing form. If the highest reservation prize among all unopened boxes in the CS exceeds both

the reservation prize of search, Z°(m), and the flow value (1 — §)v of each opened box (as well as

9A1l the results extend to the case where = is infinite.
10Because all the relevant information about the state of the search technology is summarized in the number
of past searches, we abuse notation and let Z°%(m) denote the index for the m-th search.
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the value of the outside option), then the DM opens one of the unopened boxes with the highest
reservation prize. If, instead, the reservation prize of search Z°(m) exceeds the reservation prize
TP (&,0) of every unopened box, the flow value (1 — §)v of each opened box, and the outside
option, then the DM chooses to search. If neither of these two cases applies, the DM stops. In
that event, she selects the opened box whose flow value (1 — §)v is highest, provided it exceeds
the outside option; otherwise, she takes the outside option.

As in Weitzman’s problem, the reservation prizes Z¥ (£, () of the boxes that have not been
opened yet have the following interpretation.!! Suppose there are only two alternatives: one is
an unopened &-box, and the other is a hypothetical box yielding a constant flow payoftf K per
period. Then, Z7(¢,() is the value of K for which the DM is indifferent between choosing the
hypothetical annuity (with continuation value K/(1 — §)) and inspecting the unopened £-box
while retaining the option to recall the annuity after observing the realized prize v.

The reservation prize of search, Z°(m), extends this logic. Consider again two options: the
hypothetical annuity yielding known K, and the opportunity to search for a new box. The
reservation prize of search is the value of K for which the DM is indifferent between taking
the annuity immediately and performing one additional search, retaining the option to take the
annuity later either:

(a) immediately after discovering the category & of the newly found box, if ZF(¢,0) < K, or

(b) after inspecting the box—if Z(£,()) > K—in the event that the realized prize v <
K/(1-9).

See the Supplement for a more general treatment of irreversible problems with an endogenous
set of alternatives for which the optimal policy is indexable.

Relative length of expansion. To incorporate frictions in the search for new alternatives,
we assume that each time the DM searches, she forgoes the opportunity to explore any of the
alternatives currently in the CS, with search requiring the same amount of time as a single explo-
ration. All our results extend to environments in which the duration of search and exploration
varies stochastically with the state. Specifically, they generalize to semi-Markov settings where
time is not slotted into discrete periods, and decision times are modeled as random variables.
In such a setting, the time required to “pull an arm” can be stochastic, heterogeneous across
arms, and different from the time needed to expand the CS. Similarly, the time required for each
search may depend on the outcomes of previous searches. These durations must therefore be
incorporated into the state variables: for explorations, into each arm’s state w?’; for search, into
the state of the search technology w?.

Moreover, because the time cost of search can be made arbitrarily small through appropriate

U'Weitzman defines the reservation prize Z7(w?) for w® = (&,0) as the solution to A\ = 5];@13)(@ —
IP (wP))dFe(v) — (1 = 6)IF (w?), which yields
IP(WP) = [-A8 + 5[;,2@13) vdF¢(v)]/[1 — FS(ZF (wT))]. The reservation prizes in (5) are thus equal to those

in Weitzman (1979) multiplied by (1 — d); that is, Z¥ (w?) = (1 — §)ZF (wF).
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rescaling of payoffs and adjustment of the discount factor, the framework also accommodates
environments in which search and learning proceed almost in parallel. That is, our results
continue to apply even when search causes only negligible delays in the exploration of existing
alternatives so that search and learning occur “almost” in parallel.

No discounting. The results above assume that 6 < 1. However, they extend to § = 1 (i.e.,
no discounting). As noted in Olszewski and Weber (2015), bandit problems in which 6 = 1 can
be thought of as problems with non-discounted “target processes” where arms reaching a certain
(target) state stop delivering payoffs. A well-known result for such problems is that the finiteness
they impose allows one to take the limit as 6 — 1 (see e.g., Dumitriu, Tetali, and Winkler, 2003).

General “states” and multiple search options. The general model presented in Section 2
is highly flexible. As noted earlier, the results in Theorem 1 and Proposition 1 also apply to
environments in which the state of each alternative evolves due to factors beyond information
acquisition—for instance, through exogenous shocks such as firms improving their products over
time. Moreover, the framework accommodates settings in which the DM has access to multiple
search opportunities and can choose where and how to expand the CS. The results in Theorem
1 and Proposition 1 extend to such settings provided that each “search arm” brings forth a set
of alternatives independently of all other search arms.

The results also extend to settings in which search arms function as “meta-arms” that do not
directly introduce new alternatives, but instead reveal information relevant to an entire group
of alternatives—information that is independent of that revealed by other meta-arms for other
groups. The proof proceeds along lines similar to those used in establishing Theorem 1. The
parallel with the case of multiple independent search arms becomes evident when interpreting
the information shared across a group of alternatives as a category, following the classification
introduced in Section 2. Under this interpretation, the problem corresponds to one in which
the CS is initially empty, and each independent meta-arm, when activated, yields a fixed set of

alternatives that share a common category, which is revealed at the time of activation.

5 Application: Experimentation and Solicitation in Sequential Procurement

Auctions

In many procurement settings, buyers face uncertainty not only about the quality and cost of
services offered by different suppliers but also about the set of firms in the market that could
potentially provide those services. For instance, municipalities and other public agencies regularly
procure goods, infrastructure, and services from private companies to meet public needs. These
agencies engage in repeated procurement from multiple vendors while also investing in advertising
and other solicitation efforts to identify new potential suppliers. The uncertainty surrounding

such campaigns arises from limited knowledge about how many firms are active in the market,
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whether their services meet the required standards, and the cost of procuring from them.

In this section, we show how the procurement problem—with a set of suppliers endogenously
built over time—mnaturally maps into our model. We then use Theorem 1 and Proposition 1 to
analyze the properties of the optimal mechanism.

We assume that each supplier’s unit cost of providing the service is privately known to the
supplier. This assumption allows us, among other things, to derive novel predictions about
the dynamics of inefficiencies in bidder solicitation under profit maximization (i.e., when the
designer maximizes buyer surplus rather than total welfare). While, under the optimal mecha-
nism, suppliers’ costs are revealed through bidding when they join the mechanism, the quality of
each supplier’s service is learned by the buyer gradually through experimentation (i.e., through
repeated purchases).

In addition to the procurement literature, the analysis contributes to the “bandit auctions”
literature by endogenizing the set of bidders, and to the recent literature on bidder solicitation
in auctions by incorporating dynamics in which solicitation efforts depend on the outcomes of
past campaigns and the performance of previously contracted firms.

While the analysis is motivated by the procurement of goods and services by municipalities,
the results apply more broadly to both public and private procurement problems, as well as to

the design of screening mechanisms with an endogenous set of agents.
5.1 Environment

A buyer repeatedly procures services from firms that have joined the procurement mecha-
nism—that is, firms that are part of the consideration set (CS). Initially, the CS is empty.
In each period, the buyer can either search for new firms (e.g., by conducting an advertising
campaign or hiring a consultant to solicit bids), or procure from one of the firms already in the
CS.

The buyer does not know how many firms are in the market for the desired service. Let
N € N denote this number. The buyer initially believes that N is drawn from a distribution
with cumulative distribution function (cdf) F' and probability density function (pdf) f. That is,
for any N € N, f(N) represents the buyer’s belief about the probability that there are exactly
N firms in the market that could potentially be brought into the procurement mechanism.

Whenever the buyer searches for new suppliers, she identifies each firm in the market that
has not yet been identified with probability p € (0,1). In other words, if there are N firms in
the market and n < N have already been identified, then the probability that the m-th search
yields k € {0, N — n} new firms is given by

ki) = (V"o 7)
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Conditional on N, the number of new firms brought into the procurement mechanism as a result
of the m-th search depends on the outcomes of past searches only through the total number n
of firms identified thus far.

For simplicity, assume that each search entails no direct monetary cost to the buyer, aside
from the opportunity cost of pausing procurement for one period.!? Given that n firms have
been identified through past searches, the buyer updates her belief about the remaining number
of firms in the market, N — n, accordingly.

Each firm incurs a unit cost ¢ each time it supplies its service to the buyer. The service
is assumed to be indivisible and can be supplied an unlimited number of times. Each firm’s
cost ¢ is drawn from a cumulative distribution function G with strictly positive density g over
the interval [c,¢]. Costs are drawn independently across firms and are independent of all other
random variables in the model. Each firm’s cost is constant over time and privately known to
the firm. We assume that the function G/g is increasing, and we define the “virtual cost” of a
firm with true cost ¢ as v(c) = c+ G(c)/g(c).

The buyer does not initially know the quality of any firm’s service—formally captured by
the distribution from which the buyer’s flow payoff is drawn—and gradually learns about each
firm’s quality through experimentation. Firms, in turn, are also unaware of the buyer’s valuation
for their services. To keep the analysis tractable, we assume that service quality is binary. Let
p € {p, 11} denote a firm’s quality, where i corresponds to high quality and p to low quality.
Each firm’s quality is drawn independently across firms and independently from all other random
variables in the model. Let p denote the ex-ante probability that a firm’s quality is high, i.e.,
Pr(ji = 1) = p.¥

Each time the buyer procures the service from a firm, she receives a signal ¥ € {0, 1} about
the firm’s quality. For simplicity, we assume that these signals coincide with the buyer’s flow
payoffs. Specifically, for any m € N, the probability the m-th signal is equal to 1 is given by
Pr(d,, = 1|3 = i) = 0, whereas Pr(d,, = 1|t = i) = ¢ € (0,1). That is, a low-quality
firm never generates a positive signal (equivalently, a satisfactory service), while a high-quality
firm does so with probability ¢q. Signals are drawn independently across time and across firms,
conditional on firm quality. In other words, the experimentation process follows the “no news
is bad news” (NNBN) framework commonly used in the literature, where “news” corresponds to
“satisfactory experiences” or, equivalently, “successes.” We note that most of the results presented
below generalize to other signal structures, as we will explain in due course.

Let a(9™~1) denote the buyer’s expected flow payoff (gross of any payments) from procuring
for the m-th time from a firm with signal history 9"~! = (¥,)™'. When 9™~ is such that 9J; = 1
for some | < m — 1, u(9™!) = q. When, instead, 9™ ! is such that ¢, = 0 for all | < m — 1, or

12This assumption is made solely for expositional convenience and does not play a critical role in the results
that follow.
13We use tildes to denote random variables.
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m = 0 (in which case 9" ! = (),

p(1—q)"
p(l—gm+1—-p’

a(Wm ) =q-

where p(1 — ¢)"™/[p(1 — ¢)"™ + 1 — p| is the posterior probability that the quality of the firm’s

service is 11 given that the firm never delivered a satisfactory service in the past.
5.2 Profit- and Welfare-Maximizing Mechanisms

Whenever the buyer identifies a new firm, she invites it to join the procurement mechanism and
submit a bid. This bid determines the payment the buyer will make to the firm each time its
service is procured. Additionally, the buyer commits to paying a lump-sum transfer 7" to the firm
upon joining the mechanism, where T depends on the firm’s bid (details follow). This transfer
remains fixed regardless of the firm’s subsequent utilization. Firms identified in period ¢ submit
their bids at the end of that period.

To facilitate the mapping of this application to the general model in the paper, let S denote
the state of the procurement mechanism. This state specifies, for each past search and each bid
b, the number of firms that joined the mechanism after that search with bid b, as well as the
history of signals # = 9™ for each firm in the mechanism. If a search is conducted at period ¢,
the state S at the end of period ¢ also includes, for each bid b, the number of new firms identified
in period ¢ that submitted bid b.

The buyer aims to maximize either welfare—the expected discounted value of the services
procured net of firms’ costs—or profits—the expected discounted value of the services procured
net of payments made to the firms. We refer to the latter objective as “profits” to facilitate
comparison with other screening problems, particularly those studied in the recent literature on
bidder solicitation in auctions; see, e.g., Lauermann and Wolinsky (2017) and Lauermann and
Wolinsky (2025). In our procurement application, the buyer maximizes profits when acting as a
firm procuring inputs for the production of a final good. Conversely, when the buyer represents
a local public authority—such as a municipality procuring services for its citizens—it is sufficient
to interpret profits as “buyer surplus.”

Consistent with the dynamic mechanism design literature, we say that a procurement mech-
anism is optimal if: (a) it is interim incentive compatible (IC) and individually rational (IR),
meaning that, without knowledge of the current state of the mechanism when solicited to join,
each firm—regardless of its cost—finds it optimal to join and bid truthfully, assuming that all
other firms do the same; and (b) it maximizes the buyer’s objective over the entire class of direct
revelation mechanisms that satisfy interim IC and IR.

For each of the objectives described above—welfare and profit maximization—the optimal

mechanism implements the same allocations as those sustained under an index policy analogous
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to the one in Theorem 1. Specifically, suppose each firm bids truthfully (i.e., each firm with cost
¢ submits bid b = ¢ upon joining), and consider the following experimentation problem, which is
a special case of those covered by Theorem 1:

1. Each firm corresponds to an “arm” whose category is given by the firm’s bid (equivalently,
its cost), and whose state w”(b,6) combines the firm’s bid b with the history of past signal
realizations 0 = 9™ 1;

2. The state w® of the search technology specifies, for each previous search and each bid b,
the number of firms that joined the mechanism after that search with bid b. Since search incurs
no direct cost, we omit the search cost from the description of w?®.

3. The search technology is characterized by the distribution over the number of new firms
added to the mechanism following each expansion (as described above), along with the following
two assumptions: (a) the probability that a firm is identified after each expansion is independent
of its cost and service quality; and (b) all firms bid truthfully. Note that, unlike in the settings
studied in previous sections, each arm’s category here is endogenous, corresponding to the firm’s
exogenous cost under truthful bidding.

4. The flow expected payoff from procuring from a firm in state w? (b, #), when 6 = 9™ !, is
given by u(9™ ') — b under welfare maximization, and by @w(9™~') —~(b) under profit maximiza-
tion.

Let xw and x pgr denote the index policies characterized in Theorem 1 for this experimentation
problem, respectively for welfare and profit maximization.

Finally, for each bid b and each state of the mechanism S (defined exactly as in Section 2),
let S™(b) denote the state that results from adding to the outcome of the most recent expansion
one additional firm that bids b. Then, let Qw (b; S™(b)) and Qpr(b; S"(b)) denote the expected
discounted number of times a firm with bid b is utilized (from the moment it joins the mechanism
onward), given that the state of the mechanism at the end of the period in which it joins is S*(b),
respectively under policies xyw and xpg.

Lemma 1 below follows from Theorem 1 along with standard properties of screening models

with a continuum of types.

Lemma 1. Under the optimal mechanism, for any S = (w°,ST) and any b, a firm joining the

mechanism with bid b receives a lump-sum transfer equal to

Tw(b; 8" (0) = K + /bEQw(y;SA(y))dy

under welfare maximization, and equal to

TPR(b; 8/\<b)) - /bc QPR(y7SA(y))dy
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under profit mazximization, where K > 0 is an arbitrary constant, and S"(b) denotes the state of
the mechanism at the end of the period in which the firm joins. In each period, the buyer follows
the index policy xw under welfare mazximization and the index policy x pr under profit maximiza-
tion. Under both mechanisms, participation followed by truthful bidding is weakly dominant for
every firm. Furthermore, without loss of optimality, the buyer may disclose the current state of

the mechanism to any identified firm prior to its joining.
5.3 Dynamics under Optimal Mechanisms

We now establish several properties of the procurement dynamics induced by the optimal mech-

anisms.
5.3.1 Preliminaries

We begin by establishing several useful properties of the search (or expansion) index. Let >
denote the strict dominance relation under the Monotone Likelihood Ratio order (MLR); that
is, F > F if and only if f(N)/f(N) is increasing in N. Let Z% denote the search index, where
x = W under welfare maximization and x = PR under profit maximization. Lemma 2 below
characterizes key properties of these indexes.

The following definition proves useful:

Definition 3 (Ultra log concavity and convexity). A distribution F' is UL-concave (respectively,
UL-convex) if L(N) = (N + 1)f(N +1)/f(N) is decreasing (respectively, increasing) in N.

The Poisson distribution provides a useful benchmark. When F' is Poisson with parameter
A, the posterior distribution over the total number N of firms in the market conditional on
n € N firms having been identified through m € N past searches is itself Poisson with parameter
A(1 — p)™. This posterior is decreasing in m but invariant in n.!* Hence, under a Poisson prior,
the search index deteriorates deterministically with each additional expansion. For the Poisson
distribution, L(N) = A. Distributions that are UL-concave (respectively, UL-convex) are more
(respectively, less) concentrated around the mode of the probability mass function than a Poisson
distribution with the same mean. In the proof of Lemma 2, we show that these properties are
preserved by the posteriors over the number of firms yet to be discovered, which in turn has

important implications for the behavior of the search index.

14 This follows from the general property that, when the distribution of the random variable X is Poisson with
parameter \ and, conditional on X = z, the random variable Y|z is binomial with parameters (z,p), then the
unconditional distribution of Y is Poisson with rate Ap. In the current model, X is the total number of firms in
the market, and Y is the number of firms that remains undiscovered after m searches. The probability that a
firm in the market remains undiscovered after m searches is (1 — p)™. Hence, conditional on X = N, the random
variable Y| N is binomial with parameters (N, (1—p)™). We conclude that the posterior distribution over the total
number of firms in the market that remain to be found when the first m searches identified n firms is invariant
in n and is Poisson with parameter A(1 — p)™.
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Lemma 2 (Properties of the search index Z5). The following properties about I3 are true for
both x =W and v = PR:

1. I3 depends on the state w® of the search technology only through the number of past searches
(m) and the number of firms identified (n);

2. I9 is decreasing in m;

3. I9 is decreasing (respectively, increasing) inn if F is UL-concave (respectively, UL-conver).*®

Part (1) establishes that the search index Z7 depends on the history of past search outcomes
only through two statistics: the number of searches m conducted thus far, and the total number
n of firms identified. With a slight abuse of notation, we will therefore write Z%(m,n) to denote
the search index associated with the (m + 1)-th search.

Part (2) establishes that, for a given number n of firms identified through past searches, the
search index Z9(m,n) is decreasing in m: the more searches it takes to identify n firms, the
lower the resulting search index. This monotonicity arises because, holding n fixed, the posterior
distribution over the number of remaining firms in the market becomes less optimistic (in the
Monotone Likelihood Ratio-MLR~order) as the number of searches m increases.

Part (3) follows from the recursive characterization of the search index provided in Part
(2) of Theorem 1, together with the property that, when the distribution F' is UL-concave
(respectively, UL-convex), a larger number n of firms identified through a fixed number m of
searches makes the buyer more pessimistic (respectively, optimistic) about the outcome of the
(m+1)-th search (i.e., the number of new firms identified, in the MLR order). Namely, the result
derives from this comparative statics property together with two additional facts: (a) stopping
in the computation of the search index occurs at the first time at which the search index itself
and the indexes of all the alternatives brought to the CS by the current and future searches fall
weakly below the value of the search index at the time the latter is computed; and (b) the search
index equals the expected discounted sum of the flow payoffs generated by the alternatives found
through search, normalized by the average discounted time required to realize them, with all the
expectations under the process induced by the index policy yw (welfare maximization) or xpr
(profit maximization). It is important to note that none of the results in this lemma rely on

the assumption that the signal-generating process satisfies the “no news is bad news” (NNBN)

property.

I5Tf F is Poisson, If is invariant in n.
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5.3.2 Positive Implications

We are now ready to derive several implications of two key features of the optimal procure-
ment mechanism—whether designed to maximize welfare or profit. First, the mechanism takes
the form of a sequence of auctions, used to elicit firms’ cost information. Second, the buyer’s
experimentation and solicitation strategies are governed by an index policy.

A key implication is that, when the distribution F is Poisson or UL-concave, the search
index declines with each additional search. This implies that the buyer becomes increasingly
lenient over time in her willingness to tolerate underperformance from the firms already in the
mechanism. The notion of such leniency is particularly sharp when the signal-generating process
satisfies the NNBN (No News is Bad News) property. To formalize this idea, let A,(c;m,n)
denote the number of failed attempts the buyer allows a firm with cost ¢ (revealed via its bid
upon entry) before initiating a new search, conditional on the fact that it took m searches to
identify n firms. This is defined under the optimal mechanism for x = W, PR, corresponding to
welfare and profit maximization, respectively. That is, when the first m searches have identified
n firms, any firm with cost ¢ is granted at most A, (c; m, n) opportunities to supply a satisfactory
service (i.e., to generate a signal 9 = 1) before the (m + 1)-th search is triggered. Importantly,
the (m + 1)-th search will not occur as long as there exists a firm in the mechanism with state
w? = (¢,9°~") such that ecither 327" > 0 (the firm has already provided a satisfactory service
at least once), or s —1 < A,(¢;m,n) (the firm has not yet exhausted its allowed number of

attempts).
Lemma 3. The function A.(c;m,n) satisfies the following properties, for x = W, PR:
1. It is decreasing in ¢ and increasing in m;

2. If F is UL-concave (respectively, UL-convex), it is increasing (respectively, decreasing) in

TL.16

That A.(c;m,n) is decreasing in ¢ follows from the fact that a higher cost increases the buyer’s
unit cost of procurement, which naturally leads the buyer to be less tolerant of underperformance
from higher-cost firms. In contrast, all other properties of the function A, (c;m,n) are nontrivial

and follow from the characterization of the search index in Lemma 2.

Definition 4. Under objective x = W, PR, the buyer is said to be more lenient if she grants a
larger number of failed attempts A, to each firm in the mechanism before initiating a new search,

and less lenient if she grants a smaller number of such attempts.

Proposition 2. The following properties hold for both x =W and x = PR:

161f I is Poisson, A, (c;m,n) is invariant in n.
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1. Monotonicity of leniency in search depth under Poisson or UL-concave priors:

When F' s either Poisson or UL-concave, the buyer becomes more lenient as the number
of searches increases, regardless of how many firms have been identified. That is, for any

cost ¢, and for allm' > m, n' >n, A,(c;m',n') > A.(c;m,n).

2. Monotonicity of leniency in identified firms under UL-convex priors:

When F is UL-convex, for any fixed number of past searches m, the buyer becomes less
lenient the more firms have been identified. That is, for any cost ¢, and for all n' > n,
Ag(e;m,n’) < Ap(e;m,n).

While the result above is for the NNBN case, it extends more generally. Under the optimal
mechanism for z = W, PR, the (m + 1)-th search is not conducted as long as there exists at
least one firm in the mechanism whose index satisfies ZF (¢, 9°71) > Z9(m,n). That is, the buyer
postpones additional search until all firms in the current mechanism have indexes strictly below
the search index. This property follows directly from the indexability of the optimal policy, as
established in Lemma 1.

Moreover, because the monotonicity properties of the search index Z%(m,n) in (m,n), as
established in Lemma 2, do not rely on the specifics of the signal-generating process, the quali-
tative implications extend beyond the NNBN case. In more general environments, the buyer can
still be interpreted as becoming more lenient if she tolerates lower values of the firm-level index
ZP(e,9571) before initiating new searches.

In the NNBN setting, the index ZF(c,9*71) for a firm that has never delivered a satisfactory
service is a deterministic function of the firm’s cost ¢ and the number of failed attempts. Under
more general signal structures, by contrast, the index depends on the buyer’s posterior belief
that the firm is able to deliver a satisfactory service, which may evolve stochastically with the
signal history 95=1.17

Our second result (Proposition 3 below) establishes that firms joining the procurement mech-
anism at a later stage—i.e., after a greater number of searches—earn higher expected profits
than those entering earlier, holding constant the number of competitors present at the time of
entry, the firms’ costs, and the individual history of experimentation outcomes. In other words,
the longer it takes the buyer to assemble the pool of potential suppliers, the more favorable the

expected profit becomes for a newly joining firm.

Proposition 3. Consider two states of the procurement mechanism, S = (w®,8F) and S =

(CZJS,SOP), such that the total number of firms in the mechanism and each firm’s state w® =

1"Tn settings with more general payoff structures, the index ZF(c,9°~!) of a firm with cost ¢ and signal history
957! remains defined as the expected discounted sum of the buyer’s flow payoffs until stopping, normalized by
the expected discounted duration of time. However, unlike in simpler environments, this index need not admit a
sufficient statistic—such as the posterior belief that the firm’s product is safe or that the service is of high quality.
Instead, it may depend on the entire signal history 9°~!, without reducing to a lower-dimensional summary.
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(¢, 9°71) are identical in S and S (i.e., S® = ST). Let m and 1h denote the number of searches
conducted under S and So, respectively, and assume that m > m. Consider the perspective of a
firm with cost ¢, after being informed of the state of the procurement mechanism at the end of the
period it joins. Regardless of whether the buyer’s objective is welfare or profit mazimization, the
firm’s expected discounted number of utilizations and hence its expected profits are greater after

learning that the state is S than after learning that the state is S.

The result follows from Theorem 1, Lemmas 1 and 2, and the arguments in the proof of
Lemma 2, which establish that the distribution over the outcome of each search depends on
the state of the search technology only through the statistics (m,n). Since a firm’s index is a
deterministic function of its state w’, every firm has the same index under the two states. In
contrast, the search index is lower in S than in S , as it took more searches to identify the same
set of firms under S. This last property, together with the fact that the distribution over future
search outcomes depends only on (m,n) and is such that the likelihood of discovering new firms
decreases with the number of past searches, implies that the joining firm’s expected number of
utilizations is higher under S than under S. Finally, because the firm’s expected profit under
the optimal mechanism is strictly increasing in its expected utilization (by Lemma 1), it follows
that its expected profit is also higher in state S.

As in Lemma 2, the result does not rely on the assumption that the signal-generating process
is NNBN. One may conjecture that the reason why a longer search process benefits a joining
firm is that it signals a greater likelihood that the buyer has been disappointed by the firms
previously utilized. While this property may also be relevant in specific settings, it plays no role
in Proposition 3. What makes the result compelling is that the only dimension differentiating
the two states is the length of the search process. The composition of the CS—formally captured
by the function mapping each firm’s state w” = (c,9°71) to the number of firms in that state—is
identical across S and S (i.e., SP = 8P ). In particular, note that if no further searches were
to occur, the joining firm’s expected profits would be the same under both S and S. Thus, the
difference in expected profits arises solely from the implications of a longer search process for the

buyer’s future behavior, not from differences in the current pool of firms.
5.3.3 Normative Implications

We now analyze the inefficiencies that arise under profit-maximizing procurement (namely, when
the buyer does not account for firms’ profits), focusing on those linked to the expansion of the pool
of potential suppliers (CS), that is, the solicitation of new firms. The objective is to understand
how the buyer’s behavior diverges from the socially optimal one when she prioritizes her own

surplus rather than total surplus. Define

A(c;m,n) = Aw(c;m,n) — Apr(c;m,n)
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as the difference in the number of failed attempts granted to a firm with cost ¢ under welfare
and profit maximization, conditional on the first m searches having identified n firms. Also, let

¢(m,n) denote the solution to
Iﬁ,(m, n) - IER<m’ n) = G(c>/g(0)7

that is, the cost level at which the wedge between the welfare-based and profit-based search
indexes exactly offsets the handicap G(c)/g(c) in the virtual cost v(c), which accounts for the
implications of firm utilization on informational rents.

We start with the following observation:
Lemma 4. A(c;m,n) - (¢ — é(m,n)) > 0.

The lemma establishes that, prior to the (m -+ 1)-th expansion, low-cost firms are granted
an inefficiently large number of failed attempts relative to what would be optimal under welfare
maximization, while the opposite holds for high-cost firms. The result follows from the fact that,
under both the profit-maximizing and the welfare-maximizing mechanism, the buyer follows an
index policy, along with the recursive structure of the search index characterized in Part (2) of
Theorem 1.

To understand the result, note first that, under profit maximization, the search index is
distorted downward by a fixed positive amount to account for the informational rents that the
buyer must leave to the identified firms. Specifically, each firm’s profit-based index is lower than

its welfare-based counterpart by an amount equal to

III/?/<07 195_1) - IER(Cv 198_1) -

reflecting the marginal rent the buyer must pay to the firms to induce truthful revelation. Since
the search index aggregates across the indexes of the firms identified through search—as estab-

lished in Part (2) of the theorem—the distortion in the search index satisfies

G(c)
g(e)’

where ¢ is the highest cost in the support of F. Other things equal, this wedge in the search

0< I&;(m, Tl) o II§R<m7 n) <

indexes contributes to delay in the solicitation of new firms.

Next note that the distortion in each firm’s index is smaller than the distortion in the search
index for low-cost firms, but larger for high-cost firms. This asymmetry arises because the
handicap G(c)/g(c) in the virtual costs is increasing in ¢, while the distortion in the search index
reflects an average across all identified firms. Since, under both welfare and profit maximization,

a new expansion is triggered if and only if all firms currently in the mechanism have indexes
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below the search index, these properties imply that—prior to launching the next expansion—the
buyer, under profit maximization, tolerates an inefficiently large deterioration in the indexes of
low-cost firms and an inefficiently small deterioration in the indexes of high-cost firms. The lemma
formalizes this insight by leveraging these monotonicity properties along with the structure of
the NNBN setting, in which the deterioration in each firm’s index is solely determined by the
number of failed attempts.

Note that the threshold ¢ is generally non-monotonic in m. To see why, consider that when
m is small, search is expected to yield many new firms, as shown in the proof of Lemma 2.
Some of these firms are likely to have low costs. Since such firms are the most influential in
determining the search index—and because their handicap G(c)/g(c) is small—it follows that
the wedge Zi,(m,n) — Zpp(m,n) is also small for small m.*® Similarly, when m is large, the
expected number of new firms identified in future searches is very small (again by Lemma 2),
so the wedge between the welfare- and profit-based search indexes is again small. Thus, in both
early and late stages of the procurement process, ¢(m,n) is close to ¢, implying that most firms
are granted an inefficiently low number of failed attempts under profit maximization relative to
the welfare benchmark.

Next, fix m and consider how variations in n affect the threshold ¢(m,n). When the prior
is UL-concave or Poisson, ¢(m,n) is typically non-monotonic in n. The reason is that, in these
cases, the probability of identifying new firms decreases with the number of firms already found.
As a result, the same logic used to explain the non-monotonicity of ¢(m,n) in m applies here:
when few or many firms have already been identified, the wedge Zi,(m, n) — Zpp(m, n) between
the search indexes is small which implies that ¢(m,n) is close to c.

By contrast, when the distribution is UL-convex, identifying more firms increases the buyer’s
expectation that future searches will yield even more new firms, including those with low costs.
In this case, the wedge Zi,(m,n) — Z2z(m,n) may decrease with n, implying that é(m,n) may
also decrease in n. Under UL-convexity, it is thus possible that too many firms are granted too

few failed attempts when the pool of participating firms becomes large.

Proposition 4. The following observations characterize the inefficiencies induced by profit mawi-

mization:

e Low-cost firms (i.e., those with ¢ < ¢(m,n)) contribute to inefficient entrenchment—the
buyer delays the solicitation of new suppliers longer than would be efficient under welfare
mazimization. Conversely, high-cost firms (with ¢ > ¢é(m,n)) contribute to inefficient

impatience with incumbents, prompting premature search relative to the welfare benchmark.

18That low-cost firms are the most salient in the determination of the search index follows from its recursive
structure established in Theorem 1, which implies that (a) only the indexes of firms whose index exceeds the
search index contribute to its computation, and (b) the optimal policy 7 used in the definition of the search index
is itself an index policy, which prioritizes firms with the lowest costs.
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o An analyst who lacks information about firms’ indexes but knows that their bids are below
¢(m,n) can predict excessive delay in the expansion of the pool of potential suppliers, relative
to the efficient benchmark.

As anticipated in the Introduction, and in contrast to standard screening problems, when the
pool of firms is endogenous and gradually constructed over time, all firms contribute to search
inefficiencies, regardless of their type. However, low- and high-cost firms contribute in opposite
directions: low-cost firms tend to generate inefficient delays in the search for new suppliers, while

high-cost firms induce excessively early expansions.

6 Conclusions

We introduce a model of dynamic experimentation in which the decision maker alternates between
exploring alternatives in the consideration set and searching for new alternatives to explore in the
future. Fach search stochastically delivers a new set of alternatives of varying types, which are
then added to the consideration set. As a result, the consideration set is constructed gradually
in response to the information revealed over time. We characterize the optimal policy and show
how the trade-off between exploring existing alternatives and expanding the consideration set
depends on the properties of the search technology. This evolving trade-off is governed by a
comparison of independent indexes, with the search/CS-expansion index computed recursively
to reflect future optimal decisions.

We illustrate how the results can be put to work in concrete applications by considering
the design problem of a buyer repeatedly procuring a service from multiple firms. The buyer
faces uncertainty about the number of potential suppliers and learns the quality of their services
through experimentation, while firms possess private information about their costs. The optimal
procurement mechanism—whether the buyer maximizes profit or total surplus—takes the form
of a sequence of auctions with endogenous and time-varying solicitation. Upon entry, firms bid
for the unit price at which they are willing to supply the service and receive a lump-sum transfer
designed to elicit truthful reporting. In each subsequent period, the buyer alternates between
procuring from firms with the highest index and soliciting new firms via advertising or other
outreach efforts. On the positive side, the analysis explains why a buyer may become more
lenient or more demanding with incumbent suppliers over time, and why later entrants may earn
higher expected profits, holding all else equal. On the normative side, we show that all firms
contribute to inefficiencies in the expansion and experimentation process, irrespective of their
type—but that low- and high-cost firms contribute in opposite directions.

The model can be used to study many dynamic problems in which the set of feasible alterna-
tives is not known ex ante—either due to limited attention or because alternatives are revealed

sequentially, for example by intermediaries such as search engines or online platforms. Exploring
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such applications offers a promising direction for future research.
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A Proofs

Proof of Theorem 1. Below we first establish the result in Part (2) of the theorem and then use
the recursive representation of the search index in (3) to show that, when the DM follows an index
policy, her expected (per-period) payoff satisfies the representation in (4), thus establishing Part
(3) of the theorem. We then show how the representation of the DM’s payoff in (4), along with
the recursive representation of the search index in Part (2) of the theorem and an appropriate
description of the state space that exploits the classification of the alternatives into categories,
permits us to establish Part (1) of the theorem, i.e., the optimality of the index policy, by means
of a novel proof that shows that the DM’s payoff under such a policy satisfies the Bellman
equation for the dynamic program under consideration.

Part (2). Let 7 be the optimal stopping time in the definition of Z%(w®). Note that, at 7,
the index of each alternative brought to the CS by the search under consideration (initiated in
state w®), as well as the index of search itself, must be weakly smaller than Z(w®). Otherwise,
by continuing to search, or by selecting one of the alternatives brought to the CS by the search
under consideration for which the index is larger than Z°(w®) and stopping optimally from that

moment onward, the DM would attain an average payoff per unit of average discounted time

E™ (321 6°Us|w?]
Em [0 6%|ws]

strictly greater than Z°(w?), contradicting the optimality of 7 in the definition of Z°(w®).*® This
implies that 7 is weakly greater than 7*, where the latter is the first time at which the index of
search and the index of each alternative brought to the CS by the search under consideration
are weakly below Z%(w®). Moreover, since at 7* the index of search and of each alternative
brought to the CS by the search under consideration are weakly below Z°(w?), if 7 > 7%, the
average payoff per unit of average discounted time between 7% and 7 must be equal to Z°(w®).
Hence, under the optimal selection rule in the definition of Z%(w®), the average payoff per unit
of average discounted time from 0 to 7% must also be equal to Z%(w®). This implies that the
optimal stopping time in the definition of Z%(w?) can be taken to be 7*. Because the index policy
x* selects in each period between 0 and 7* the alternative for which the average payoff per unit
of average discounted time is the largest (including search), we have that the optimal selection
rule 7 in the definition of Z°(w?¥) must coincide with the index policy x*. That Z°(w?) satisfies
the recursive representation in Part (2) then follows from the arguments above.

Part (3). We construct the following stochastic process based on the values of the indexes,

and the expansion of the CS through search, under the index policy x*. Starting with the initial

9Gince infinity is allowed as a value of the stopping time, the supremum in the definitions of Z° (and Z7) is
attained, that is, an optimal stopping time exists (the arguments are similar to those in Mandelbaum, 1986, and
hence omitted).
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state Sy = (SF,ws), let v° = max{Z*(SF),Z%(w5)}. Let t(v°) be the first time at which, when
the DM follows the policy x*, all indexes are strictly below v°, with ¢(v%) = oo if this event never
occurs. Note that ¢(v°) differs from x(v°), as x(v°) = 0 is the first time at which all indexes are
weakly below v°. Next let vl = maX{I*(Sf()UO)),IS(wf(vO))} be the value of the largest index at
t(v°), where Syu0) = (S/,0), Wijy0)) 18 the state of the decision problem in period #(v°). Note that,
by construction, #(v°) = s(v'). Furthermore, when t(v”) < oo, if v* > Z%(wg), then wjj,0) = v
We can proceed in this manner to obtain a strictly decreasing sequence of values (v) ;>g, with
corresponding stochastic times (k(v")),5,. Note that the values v* are all non-negative, as the
DM’s outside option is normalized to ze_ro.

Next, for any i = 0,1,2, ..., let n® = Z:(:v;:i))_l 55+, denote the discounted sum of the
net payoffs between periods x(v*) and x(v*™') — 1, when the DM follows the index policy, and let
(7");50 denote the corresponding sequence of discounted accumulated net payoffs, with n* = 0 if
K,(Ui)_: 0.

Denote by V(Sp) the expected (per-period) net payoff under the index policy x*, given the
initial state of the problem Sy. That is, V(Sp) = (1 — §)EX" [>72, 0'U;|So]. By definition of the
processes (K(v'));5o and (7*),5q, V(So) = (1 —8)EX [Z;’io 5“(”i)77"\80} . Next, using the definition
of the indexes in (1) and (2), observe that

Vi — (1 - 5>EX* [771‘85(1)’)]
EX® [1 — 5N(vi+1),ﬁ(vi)|sﬁ(vi)] .

(8)

To see why (8) holds, recall that, at period x(v"), given the state of the decision problem S,
the value of the highest index is v*. Now suppose that the alternative corresponding to v® is
a physical alternative and that all other physical alternatives’ indexes, as well as the index of
search, are strictly below v. Recall that the optimal stopping time 7 in the definition of the
index of the physical alternative corresponding to v in (1) is the first period (strictly above x(v"))
at which the alternative’s index falls below v*. While it is convenient to take this fall to be weak,
it is well known that one can equivalently take the fall to be strict. That is, stopping at the
first period at which the index reaches a value equal to or smaller than the value at the time the
index was computed is optimal, but so is stopping at the first period at which the index reaches
a value strictly below the one at the time the index was computed. Now recall that ¢(v) is the
first time at which all indexes are strictly below v’. Because the CS in period x(v’) contains only
one alternative with index equal to v’ (the physical one under consideration), ¢(v?) also coincides
with the first period at which the index of the specific alternative under consideration drops
strictly below v’. Recall that v**! is the largest index at period ¢(v') and that t(v*) = k(v').
The definition of the index in (1), along with the optimality of stopping at the first time the
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index drops strictly below its initial value, and the definition of 7, then imply that

* RV —1 ¢ K(v?) ) « .
Ui B EX |:ZS w(v?) 1) US|S,i vt ] B EX [771|Sm(vi)]
o * ."i(’l)l+ ) 1 s—r(vt B * ,5N(vi+1)fl<e(vi) )
B [ ] B [y ]

which corresponds to the formula in (8).

Next, suppose that the alternative with the highest index at period x(v’) is search, and that
all physical alternatives in the CS in period x(v') have an index strictly smaller than v*. As
shown in the proof of Part (1) of Theorem 1 above, the optimal stopping time in the definition
of the index of search in (2) is the first period (strictly above x(v")) at which the index of search
and of all the alternatives introduced through search, fall weakly below v‘. Equivalently, as
discussed above, the optimal stopping time can also be taken to be the first period at which
the index of search and of all the alternatives introduced through search fall strictly below v'.
Because all physical alternatives in the CS at period x(v") have an index strictly below v*, such
a period coincides with ¢(v"), that is, with the first period at which the index of search and of all
alternatives in the CS are strictly below v’. Using the above property of the optimal stopping
time in the definition of the search index in (2), along with the fact that ¢(v') = k(v*™!) and the
definition of n’, we then have that the search index evaluated at period k(v') also satisfies the
condition in (8).

Finally, suppose that, at period x(v?), there are multiple options (physical” alternatives
and /or search) with index v?. Then observe that the average sum EX" [Z:(v:; 5RO, |S,€(vi):|
of the discounted net payoffs from utilizing all options whose period-«(v*) index is equal to v°
till the first period t(v') = k(v*™) at which the indexes of all options are strictly below v’

”WH L gs—rv )]SHW-)} is the same

normalized by the average per unit discounted time EX [ES (i

as the average sum EX [Z R SRl |0 } of the discounted net payoffs from utilizing

each individual option with md(ex) (at period k(v')) equal to v* till the first time 7" at which that
option’s index (and, in case the option is search, also the indexes of all alternatives brought to the
CS by the search initiated at x(v?)) fall strictly below v’ normalized by the average discounted
time EX [Z §s—r)

Condition (8) also holds when, at x(v?), there are multiple options with index v’

s—r(vi) Sﬁ(vi)] . This follows from the independence of the processes. Hence,

Multiplying both sides of (8) by 65" rearranging terms, and using the fact that 6°(") is
known at k(v'), we have that

'L+1

(1 — 0)EX [ 1S ] = VEX [Mvi) - S

Taking expectations of both sides of the previous equality given the initial state Sy, and using
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Figure 1: An illustration of the function 6%(*) and the region

Il R(vY) _ gt = [ vdé" V), for a particular path with x(v?) = oco.
oo vt (670 — §rT ) = 245K, f 1 h with x(v?
the law of iterated expectations, we have that

(L Y [0nfs] =B [ (500 0 |gy]

If follows that

V(So) =EX | 30! (570 — a0 ) I8y )
i=0
Next, note that §%*) = 0 whenever k(v') = oo, and that, for any i = 0,1, ..., k(v) = K(v't?)

for all v"*! < v < v’. Tt follows that (9) is equivalent to

V(So) = BX [/OOO vdé”(“\so] =B [/OOO (1 - 5“@)) dv|80} = /OOO (1 —EX [5“<”>|30D dv.  (10)

The construction of the integral function (10) is illustrated in Figure 1.

Part (1). The proof of Part (1) exploits the recursive representation of the search index
established in Part (2) of Theorem 1, along with the representation of the DM’s payoff under
the index rule established in Part (3) of Theorem 1 and an appropriate description of the state
space, to verify that the DM’s payoff under the index policy satisfies the Bellman equation of
the corresponding dynamic program. The proof is in two steps. Step 1 uses the representation
of the DM’s payoff under the index rule established in Part (3) of Theorem 1 in the main text to
characterize how much the DM obtains from following the index policy x* from the outset rather
than being forced to make a different decision in the first period and then reverting to x* from
the next period onward. Step 2 then uses the results in step 1 to establish the optimality of x*
through dynamic programming.

Step 1. In the analysis below, we find it useful to describe changes in the composition of
the CS, the evolution of the search technology, as well as all information acquired about the

alternatives, entirely in terms of transitions between states. Rather than keeping track of the
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collection of kernels G¢(9™; i) describing the conditional distributions from which the marginal
signals 1,41 are drawn, we describe directly the evolution of each alternative’s state w’ as
follows. When the DM explores an alternative currently in state w”, its new state @ is drawn
from a distribution H,r € A(Q2F) that is invariant to time.? When the DM explores a different
alternative, or expands the CS, the alternative currently in state w? remains in the same state
with certainty at the beginning of the next period. Similarly, each time search is conducted, given
the current state of the search technology w®, the new state of the search technology &° is drawn
from a distribution H,s € A(Q2°).The distributions H,,s are time-homogeneous (i.e., the evolution
of the search technology depends on past search outcomes but is invariant in calendar time), and
the outcome of each new search is drawn from H, s independently from the idiosyncratic and
time-varying component 6 of each alternative in the CS.

Abusing notation, then denote the state of the decision problem by a function § :  — N
that specifies, for each w € Q, including w € Q°, the number of alternatives, including the search
technology, that are in state w.?! Given this notation, for any pair of states S’ and S” then define
S'VS = (Sw)+5"w) :weN) and S'\S" = (max{S'(w) — §"(w),0} : w € Q). Any feasible
state of the decision problem must specify one, and only one, state of the search technology
(i.e., one state @ for which S(&°) = 1 and such that S(w®) = 0 for all w¥ # &*). However, it
will be convenient to consider fictitious (infeasible) states where search is not possible, as well as
fictitious states with multiple search possibilities. If the state of the decision problem is such that
either (i) the CS is empty, or (ii) there is a single alternative in the CS and the latter cannot be
expanded, we will denote such a state by e(w), where w € € is the state of the search technology
in case (i) and of the single physical alternative in case (ii). Throughout the analysis below,
we maintain the assumption that an outside option with value equal to zero is available to the
DM. However, to avoid possible confusion, here we do not explicitly treat the outside option as

a separate alternative.
Lemma 5. For any v € R and states 8" and 8", k(v|S'V 8") = k(v|S’) + k(v]|S").

Proof of Lemma 5. The result follows from the fact that the state of each alternative that is not
explored in a given period remains unchanged, along with the fact that the time-varying com-
ponents # of the various alternatives evolve independently of one another and of the state of the
search technology, given the alternatives’ categories . Similarly, the state of the search technol-
ogy remains unchanged in periods in which search is not conducted, and evolves independently

of the time-varying component 6 in the state of each existing alternative, given the alternatives’

20Because each alternative’s category ¢ is fixed, given the current state w” = (¢, ), the distribution H,r assigns
probability one to states whose category is & and whose signal history 97! = (9™, 9,,41) is a “follower” of 9™,
meaning that it is obtained by adding a new signal realization 9,,41 to the history 9.

21With this representation, there is a unique @* € Q9 such that S(w®) = 1 if w* = &* and S(w®) = 0 if
w® # @*. The special case where the DM does not have the option to search corresponds to the case where for
all w® € 0%, S(w) = 0.
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categories £&. Furthermore, the index of each alternative is a function only of the alternative’s
state, and the index of search is a function only of the state of the search technology. Therefore,
all indexes evolve independently of one another (conditional on the alternatives’ categories), and
evolve only when their corresponding decision (search or exploration of an alternative) is chosen.
Since the decisions are taken under the index policy x*, the result follows from the fact that,
starting from any state S, the total time it takes to bring all indexes (that is, those of the alter-
natives in the CS as well as the index of search) below any value v is the sum (across alternatives

in the CS and search) of the individual times necessary to bring each index below v in isolation.
O

Given the initial state Sp, for any w” € {&F € QF : S&(©F) > 0}, denote by E [ulw”] the
immediate expected payoff from exploring an alternative in state w? and by &% the new state of
that alternative triggered by its exploration (drawn from H r). Let

VP (WP|Sy) = (1 - HE [u|wp] + OEX v (So\e(wp) \Y e(cDP)) \wP] (11)

denote the DM’s payoff from starting with exploring an alternative in state w’ and then following

the index policy x* from the next period onward. Similarly, let
VI (w]So) = —(1 — O)E [c|w®] + SEX" [V (So\e(w”) V e(@®) v WF(&%)) [w®] (12)

denote the DM’s payoff from expanding the CS when the state of search is w®, and then following
the index policy x* from the next period onward, where E [c|w5} is the immediate expected cost
from searching (when the state of the search technology is w?), @ is the new state of the search
technology, and WF (&%) is the state of the new alternatives brought to the CS by the current
search, with ¢ and W (&%) jointly drawn from the distribution H,s. Note that W (&%) is a
deterministic function of the new state &° of the search technology. To see this, recall that, for
any m € N, the function E,, in the definition of the state of the search technology counts how
many alternatives of each possible state w? have been added to the CS, as a result of the m-th
search.

We introduce a fictitious “auxiliary option” which is available at all periods and yields a
constant reward M < oo when chosen. Denote the state corresponding to this fictitious auxiliary
option by wiy, and enlarge QF to include wy;. Similarly, let e(w4;) denote the state of the problem
in which only the auxiliary option with fixed reward M is available. Since the payoff from the
auxiliary option is constant at M, if v > M, then x(v|Sy V e(w$,)) = k(v|Sy), whereas if v < M,
then k(v|Sy V e(wi))) = co. Hence, the representation of the DM’s payoff under the index policy
in Part (3) of Theorem 1 in the main text, adapted to the fictitious environment that includes
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the auxiliary option, implies that

V(So Ve(why)) = /000 <1 —EX [(5”(1))‘30 v e(wf‘/[)]) dv=M + /MOO (1 —EX {(5”(1))‘80}) dv

= V(So) + /0 Ve [M(vnso} dv. (13)

The definition of x*, along with Conditions (11) and (12), then imply the following:

Lemma 6. For any (w®,wf, M),

VS (wSle(wS) V e(wi)) if M < T5(wS)
Vie(wd) Ve(wi)) = 14
el vetan) {M> VS (WSle(wS) Vewld)) if M > I5(wS) 4
VP (wPle(w?) V e(wi)) if M < IP (wP)
Vie(wP) Ve(wi)) = 15
(el v elein) {M> VP(WPle(wP) Ve(wd)) if M > IP(WP). (9)

Proof of Lemma 6. First note that the index corresponding to the auxiliary option is equal to
M. Hence, if M < T9(w?), given e(w®) V e(wy;), X* prescribes to start with search, implying
that V(e(w”) V e(wi))) = VI(we(w?) V e(wyi))). If, instead, M > Z%(w®), x* prescribes to
select the auxiliary option forever, with an expected (per period) payoff of M. To see why, in this
case, M > V(w|e(w?) V e(wi})), observe that the payoff V(w?|e(w®) V e(wf;)) from starting
with search and then following x* in each subsequent period is equal to V5 (w®|e(w®) Ve(wiy)) =
EX, [(1-0) ST dU, + 6" M|w®], where 7 is the first time at which the index of search and of
all the alternatives brought to the CS by search fall weakly below M, and where the expectation
is under the process that obtains starting from e(w®) V e(w4;) by searching in the first period
and then following the index policy in each subsequent period (the notation Efl[-] is meant to
highlight that the expectation is under such a process). This follows from the fact that, once
the DM, under x*, opts for the auxiliary option, he will continue to select that option in all

subsequent periods. By definition of Z%(w?),

PP o= L ] = L
e o] - B [

Rearranging, MEX, [S°7-) 6°|w®] > EX 212} 0°U,|w®]. Therefore,

T—1 F—1
Ei*l (1—5)2(55U5+5TM‘WS] < ME);*l (1_6)253+5T’wS] - M.
5=0 s=0
Similar arguments establish Condition (15). O

Next, for any initial state Sy of the decision problem, and any state w?” € {&F € QF : Sy(w?) >
0} of the alternatives in the CS corresponding to Sy, let D¥ (w?|Sy) = V(Sp) — VP (wP|Sy) denote
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the payoff differential between (a) starting by following the index rule x* right away and (b)
exploring first one of the alternatives in state w? and then following x* thereafter. Similarly, let
D% (w%8p) = V(Sy) — V¥ (w?|Sy) denote the payoff differential between (c) starting with x* and
(d) starting with search in state w® and then following x*. The next lemma relates these payoff
differentials to the corresponding ones in a fictitious environment with the auxiliary option. In
the statement of the lemma, Sy \ e(w?) is the state of a fictitious problem where search is not
possible, whereas S\ e(w?) is the state of the CS obtained from S by subtracting an alternative

in state w’.

Lemma 7. Let Sy be the initial state of the decision problem, with w® € Q° denoting the state of
the search technology, as specified in Sy. We have that

I*(S§)
DI = [ DIl v el [55] \ efw?)] (16)
0

+ B [50)180\e(w))| DS (@le(w®) v e(wi).

Similarly, for any alternative in the CS in state w” € {&F € QF : SF(0T) > 0},

maz{Z* (S \e(w")),Z% (w?)}
DP(WP|S)) = / '

D (@Ple(w") V e(wi) dEX [50)[Sy \ e@)]  (17)

+ B [5OS0\e(w?))] DP (@ le(w) V e(wi))).

Proof of Lemma 7. Using Condition (13), we have that, given the state SyVe(w4;) of the decision
problem, and w? € Q°,

M
D5 (W3S V e(wiy)) = V(So) + /0 EX [5“<v>|30] dv + (1 — 0)E [c|w®] (18)

M
— 6EX [V(Sg\e(ws) V(@) vt (@%) + / EX [5~<v>\so\e(w5) V(@) Vv WP(a)S))} des] :
0
where the equality follows from combining (12) with (13). Similarly,

D3 (wSe(w?) Ve(wi)) = V(ie(w?)) + fo EX" [65®)|e(wS)] dv + (1 — 8)E [c|w”] o
~3Ex [V( (@ )VWP(QS)) fo EX” [55 U)| (~S) \ WP((IJS))] dv|w5} .

Differentiating (18) and (19) with respect to M, using the independence across alternatives
and search and Lemma 5, we have that

0

0 D180V elwi)) = BX [#00180\e(w)] S0 D le(w) V efeofy)). (20)

That is, the improvement in D%(w%|Sy V e(wy})) that originates from a slight increase in the
value of the auxiliary option M is the same as in a setting with only search and the auxiliary
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option, D¥(w¥|e(w®) V e(wy))), discounted by the expected time it takes (under the index rule
X*) until there are no indexes with value strictly higher than M, in an environment without

search where the CS is the same as the one specified in §y. Similar arguments imply that, for
any w!’ € {of € QF : §y(@f) > 0},

O DP (WP IS0V elwfl) = BX [500]So\e(w”)]

oM iDp(cfle(wp) Ve(wiy)). (21)

oM

Let M* = max{Z*(S8F),Z%(w")}. Integrating (20) over the interval (0, M*) of possible values
for the auxiliary option and rearranging, we have that

-
DS(w518) V e(wi))) = DS (w5180 V e(wi)) — /0 EX [5°0)]Sp\e(w"))] ;}Ds(wsle(ws)\/e(wf))dv

= D% (w|Sy V e(wiy+)) — D¥(w]e(w®) V e(wiy))

+ B [50)180\e(w))| DS (@le(w®) v e(wi)
M*
[ DSl V el ABY [ sihe(w)]
0
where the second equality follows from integration by parts and from the fact that

EX" [5N(M ")

So\e(w®)] = 1.

That the outside option has value normalized to zero also implies that D(w®|Sy V e(wg')) =

D5 (w%|8y). Tt is also easily verified that D (w¥|Sy V e(wi.)) = D% (w¥]e(w®) V e(wiy.)). This
follows immediately from the observation that V(Sy V e(wiy.)) = V(e(w?) V e(wiy.)) = M*, and

similarly

EX [V (So\e(w®) Ve(@®) v WP (&%) Ve(wiy.)) |[w®] = EX [V (e(@®) v WFP(&5) V e(wiy)) [w®] -

Intuitively, under the index policy, any alternative with index strictly below M* is never explored
given the presence of an auxiliary alternative with payoff M*. Therefore, we have that

M*
DS = [ DI @e(w) v el MEY [50)|S0\e(w”) (22
0

+ B [5O180\e(w®))| D3 (wFle(w®) V e(wi))).

Similar arguments imply that

P/, P - M P/, P P A x* K(v) P
DP(W|8y) = /0 DP (7 efw”) V elw))ABX” [50)]Sp\e(w”) (23)

+ B [50|80\e(w"))] DP (@ e(w) V e(wi))).
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To complete the proof of Lemma 7, we consider separately two cases. Case (1): given Sy,
X* specifies starting by exploring a physical alternative (i.e., M* = Z*(SF)). Then Condi-
tion (16) in the lemma follows directly from (22). Thus consider Condition (17). First ob-
serve that, for any state wf € QF such that M* > max{Z*(SF\e(wT)),Z%(w")}, we have that
M* = TF(wP), in which case DF(wP|Sy) = DF(wPle(w?) V e(wd')) = 0 and the integrand
DP(wPle(wf)Ve(wd)) in (23) is equal to zero over the interval [0, ZF (w”)] and hence also over the
interval [0, max{Z*(SF\e(w)),Z%(w")}]. We thus have that, in this case, Condition (17) clearly
holds. Next observe that, for any state w?” € QF such that M* = max{Z*(S'\e(w?)),Z%(w®)},
Condition (17) follows directly from (23).

Case (2): given Sy, x* specifies starting with search (i.e., M* = Z9(w®)). Then, for any
w? € OF max{Z*(8F\e(wT)),Z%w")} = M*, in which case Condition (17) in the lemma
follows directly from (23). That Condition (16) also holds follows from the fact that, in this case,
D5 (w?|8y) = D% (wle(w®) Ve(wy)) = 0 and the integrand D (w?|e(w®) Ve(w)) in (22) is equal
to zero over the entire interval [0, max{Z*(S{"\e(w”)),Z(w%)}]. O

Step 2. Using the characterization of the payoff differentials in Lemma 7, we now establish
that the average per-period payoff under x* solves the Bellman equation for our dynamic opti-
mization problem. Let V*(Sp) = (1 — 0)sup,cEX[Y .7 6'U;|So] denote the value function for

the dynamic optimization problem.

Lemma 8. For any state of the decision problem Sy, with w® denoting the state of the search

technology as specified under Sy,
1. V(So) > V3 (w?Sy), and V(Sy) = V°(w®[So) if and only if T%(w®) > T*(SP);

2. for any w¥ € {&F € QF : Sy(@F) > 0}, V(So) > VE(wP|Sy), and V(Sy) = VI (wF|Sy) if and
only if IV (w?) = T*(SF) > T°(w®).

Hence, for any Sy, V(So) = V*(So), and x* is optimal.

Proof of Lemma 8. Part (1). First, use (14) to note that, for all v > 0, DS (w¥|e(w®) V e(w?)) >
0, with the inequality holding as an equality if and only v < Z9(w®). Therefore, from (16),
D%(w%[Sp) > 0 — and hence V(Sy) > V¥ (w”|Sy) — with the inequality holding as an equality if
and only if Z*(8f") < Z° (w¥).

Part (2). Similarly, use (15) to observe that for any w” € {&F € QF : SF(©F) > 0} and
any v > 0, DP(wf|e(w?) V e(w?)) > 0, with the inequality holding as an equality if and only if
0 < v < ZP(wP). Therefore, from (17), DF(wf|S;) > 0 with the inequality holding as equality
if and only if Z¥ (wf) > max{Z* (S \e(wT)),Z5(w®)}. The result in Part (2) of the lemma then
follows from the fact that the last inequality holds if and only if ZF (w?) = Z*(S{") > Z5(w¥).

43



Next, note that, jointly, Conditions 1 and 2 in the lemma imply that

wPefoPeal:sf @P)>0}

V(So) = max {Vs(ws|50), max VP(wP|SO)} .

Hence V solves the Bellman equation. That §7EX [Y 22 6°U;|S] — 0 as T' — oo guarantees that
V(So) = V*(Sp), and hence the optimality of the index policyx*. O
This completes the proof of Part (1), and hence Theorem 1. [ |

Proof of Lemma 1. Observe that, under each of the two objectives (i.e., for z = W, PR), for any
state of the mechanism S = (w®, 8F), a firm with cost ¢ joining the mechanism with a bid equal

to b obtains an expected payoff equal to
(b—¢)Q4(b;S™(b)) + Ty(b; S (1))

when, as a consequence of the firm’s joining, the state of the mechanism is S*(b). Because
Q. (b; S"(D)) is decreasing in b, standard results in mechanism design imply that, irrespective of
S, joining the mechanism and bidding b = ¢ is weakly dominant for the firm.

That the procurement mechanism with transfers Ty, is welfare maximizing follows directly
from Theorem 1. That the procurement mechanism with transfers Tpg is profit maximizing
follows from the following observations. Under any (interim) IC and IR mechanism, expected
profits are equal to expected dynamic virtual surplus. The latter is equal to expected total
welfare when the buyer’s cost of procuring from each firm with cost ¢ is equal to y(c). The result

then follows from the same arguments as for welfare maximization. [

Proof of Lemma 2. Denote by F s the cdf of the random variable describing the total number
of firms in the market that have not been identified yet, when the state of the search technology
is w?¥, with the latter describing, for each past search and each bid b, the total number of firms
joining as the result of that search with a bid equal to b. Let f,s denote the corresponding
probability distribution function. That is, for any | € N, f,s(l) is the probability that the
number of firms in the market that remain to be identified is [. Note that f,_s(I) depends on
w?® only through the total number m of past searches and the total number n of firms identified
through these searches. Hereafter, we denote by f™™(l) the probability that the number of

remaining firms is [ given (n,m) and observe that

Py s (V) o (24

We denote by F™™ the corresponding cdf.

Part (1) of the lemma follows from the above observation along with the fact that each

44



expansion identifies each firm in the market that has not been identified yet independently of the
outcome of any other search and of the firms’ costs.

Before turning to Parts (2) and (3), we establish the following claim.

Claim 1. If the prior F' is UL-concave (respectively, UL-convex), then, for any (n,m), F™™ is

UL-concave (respectively, UL-convex).

Proof of Claim 1. For any n and m, any [, let

(L+ 1) fm (1 +1)
frm(l)

L) =

and observe that

) (Y (1 — ) Dm
L™ (1) = i+ 1)f(fl(—;__: ;_) (ligy,) (nl _)S)lm 0) =Ll +n)(1-p)",

Hence, L™™ (1) is increasing (respectively, decreasing) in [ if and only if L is increasing (respec-

tively, decreasing). O

To establish Part 2, we show that for any prior F, fixing the number of firms n in the CS,
F™™ is decreasing in m in the MLR order (and hence also in the FOSD order). To see that
Frm o Frmtluse (24) to observe that

T,

fn,m+1 (l)

famCHA—p)
F+n)(77) (L = p)lm+D (1= p)

where h(n,m) is a function independent of I. Hence, f»™(l)/f™™*1(l) is increasing in [, as
claimed. Finally, the fact that the posterior F™™ becomes worse (in the MLR and hence FOSD
sense) as m increases implies that Z°(m,n) is decreasing in m. This follows from the recursive
structure of the search index (Theorem 1, Part (2)). In particular, recall that the search index
maximizes the expected discounted payoff per unit of expected discounted time, which is clearly
higher the better the distribution F™™ (in the sense of MLR, and hence, FOSD), i.e., the higher
the number of firms that the next search is expected to identify.

To establish Part (3), we now show that the search index Z°(m, n) is decreasing (respectively,
increasing) in n if F' is UL-concave (respectively, UL-convex). Fix m € N. Suppose F' is UL-

concave. Then F™™ = F™t1™ hecause

o g flaEm G- L
R G TR T A (D

where h(n,m) is a function independent of I. Since F is UL-concave, L(l + n) is decreasing

in [, which means f™™(l)/f"*™(l) is increasing in [. Hence, ™™ = F™1™ This also means
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that, for any m € N and any n,n’ € N with n/ > n, F™™ = F*'™_ Arguments similar to those
establishing Part (2) then imply that the search index is decreasing in n. An analogous argument
establishes that, when F is UL-convex, for any m € N and n,n’ € N, with n/ > n, F"'"™ = F™",

Hence, in this case, the search index is increasing in n. W

Proof of Lemma 3. Observe that, given the state w” = (c,9°71) of each firm in the mechanism

with cost ¢ (revealed through bidding), the firm’s index is

— v, (c) if¥*tst. 9, =1forsomel<s—1
7r(e, ) = {1 l -

q:(c; 8) otherwise,

where, for any ¢, v,(c) = ¢ if = W and 7,(c) = v(¢) if x = PR, and where, for any ¢ and
any a € N, ¢;(c;a) is a function decreasing in both the firm’s cost ¢ and the number of times a
the firm has been used without delivering a positive flow payoff. Clearly, A,(c;m,n) = sup{a :
Gu(c;a) > I3 (m,n)}.

Part (1) follows from the fact that Z3(m,n) is decreasing in m and Z'(c,9*7!) is decreasing
in ¢ and, when 95! is such that ¢, = 0 for all [ < s — 1, ZP(c,9°7!) is decreasing in s. Part (2)
follows from the same properties together with the fact that Z% (m, n) is decreasing (respectively,

increasing) in n when F' is UL-concave (respectively, UL-convex). W
Proof of Proposition 2. The result follows from Lemma 3. B

Proof of Proposition 3. Because S = (%,8F) and S = (w¥,8F) are such that 7 = n but
m > m, by virtue of Lemma 2, Z% (1h, 1) < Z%(m,n). On the other hand, for any w? = (c,971),
SOP(wP) = SP(w?), meaning that the composition of the CS is the same under both states S and
S. The latter property implies that the index ZF of each firm in the CS is the same under S
and §. Lastly, observe that the arguments in the proof of Lemma 2 imply that the distribution
describing the outcome of future expansions is less favorable starting from & than starting from
w? (future expansions are expected to identify fewer firms, in the MLR order, whereas the cost
of each joining firm is drawn independently of the number of firms identified). Jointly, the above
properties, together with the fact that, for both x = W and x = PR, the buyer’s policy is
the index one of Theorem 1, imply that Q,(c; S) > Q.(c;S). That is, the expected discounted
number of times the firm supplies is greater when the state of the procurement mechanism at the
end of the period the firm joins is S than when it is S. That the firm’s expected profits are also
higher under S than under S follows from this property together with the fact that the firm’s
profits are T, (c; S) in the former case and T, (c; S) in the latter case, for z = W, PR. B
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Proof of Lemma 4. As established in the proof of Lemma 3,
Ay(c;m,n) =sup{a: q.(a,c) > I3 (m,n)},

where ¢, (a, ¢) is the index of a firm with cost ¢ that, after being utilized a times, never delivered
a satisfactory service.

Observe that gw(a,c) — gpr(a,c) = G(c)/g(c). Furthermore, Z8,(m,n) = I (m,n) —
y(G,m,n), where y(G,m,n) is a function of the distribution G and of (m,n).

For small ¢, qw (a, ¢) —qpr(a, ¢) is small, and hence quw (a, ¢)—Z5,(m,n) > 0 implies gpr(a, c) —
Z2x(m,n) > 0. Because q and gpg are decreasing in a, Apg(c;m,n) > Ay (c;m,n). Further-
more, because qw(a,c) — qpr(a, c) is increasing in ¢ while Z3,(m,n) — Z3p(m,n) is invariant in

¢, there exists a ¢ such that
(QW(CL? C) - QPR(C% C) - (IIA/SV(m’ n) - IlgR(ma n))) ’ (C - é(m> n)) > 0.

Note that, by the recursive properties of the search index in Part (2) of Theorem 1,

G(e)

0<7Z5 m,n S m,n) < —=.
W( ) PR( ) g(C)

Hence, the equation

qw(a, ) — gpr(a,c) — (Zy(m,n) — Ipp(m,n)) =0

admits a solution ¢(m,n) € (¢, ¢).
Suppose ¢ < é(m,n). Then qw(a,c) — qpr(a,c) < T, (m,n) — I25(m,n), which means that
if gw(a,c) — I3, (m,n) > 0 then gpgr(a,c) — Z2z(m,n) > 0. This means that A(c;m,n) < 0.
Next, suppose ¢ > ¢(m,n). Then qw(a, c) — gpr(a,c) > Z5,(m,n) — I2z(m,n), which means
that if gpr(a,c) — Z25(m,n) > 0 then qw(a,c) — Iy, (m,n) > 0. Hence A(c;m,n) > 0. B

Proof of Proposition 4. The result follows from Lemma 4. B
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